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Preface

Congratulations! By reading this you're showing an interest in one of the most
capable and versatile 8-bit microcontrollers on the market, the AVR. Continue
reading this book to learn about the entire AVR family, and how they can help
simplify the design of your electronics projects as well as allow you to create
more sophisticated products.

Like all microcontrollers. AVRs allow tailor-made solutions which rernain at
the same time completely flexible. However. AVRs are efficient, fast. and easy
to use microcontrollers, making them an ideal choice for designers. In this book
I begin from the most basic principles of microcontroller programming. such as
binary and hexadecimal. and cover the principal steps in developing a program.
Each AVR 1opic is introduced alongside one of twenty worked examples. which
include a pedestrian-crossing simulator, melody generator. frequency counters
and a computer-controlled robot. )

To begin with, the programs are largely developed for you. However, as you
progress through each chapter, more and more of the programs will be written
by you in-the form of the exercises, which appear throughout the book with
answers given at the end of the book. The appendices summarize the key prop-
erties of the most popular AVRs allowing quick reference without having to
plough through piles of datasheets.

In short this book offers a hands on approach to learning to program AVRs,
and will provide a useful source of information for AVR programmers.

John Morton
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~ Introduction

An AVR is a type of microcontroller, and not just any microcontroller — AVRs
are some of the fastest around. I like to think of a microcontroller as a useless
lump of silicon with amazing potential. It will do nothing without but almost
anything with the program that you write. Under your guidance, a potentially
large conventional circuit can be squeezed into one program and thus into one
chip. Microcontrollers bridge the gap between hardware and software — they run
programs, just like your computer, vet they are small, discrete devices that can
interact with components in a circuit. Over the vears they have become an indis-
pensable part of the toolbox of electrical engincers and enthusiasts as they are
perfect for experimenting. small batch productions. and projects where a certain
flexibility of operation is required.
Figure 1.1 shows the sieps in developing an AVR program.

1. The blank AVR does nothing -

2. Write a program ‘3. Program a virtual
on a computer AVR on.a.computer

4. Test the program on a
computer




2 Introduction

The AVR family covers a huge range of different devices, from Tiny 8-pin
devices to the Mega 40-pin chips. One of the fantastic things about this is that
you can write a program with one type of AVR in mind, and then change your
mind and pui the program in a different chip with only minimal changes.
Furthermore, when you learn how to use one AVR, you are really learning how
to use them all. Each has its own peculiarities — their own special features - but
underneath they have a common heart.

Fundamentally, AVR programming is all to do with pushing around numbers.
The trick to programming, therefore, lies in making the chip perform the desig-
nated task by the simple movement and processing of numbers. There is a
specific set of tasks you are allowed to perform on the numbers — these are
called instructions. The program uses simple, general instructions. and also
more complicated ones which do more specific jobs. The chip will step through
these instructions one by one, performing millions every second (this depends
on the frequency of the oscillator it is connected to) and in this way perform its
job. The numbers in the AVR can be:

Received from inputs (e.g. using an input ‘port’)

Stored in special compartments inside the chip
Processed (e.g. added. subtracted. ANDed. multiplied etc.)
Sent out through outputs (e.g. using an output ‘port’)

U2 D

This is essentially all there is to programming (‘great’ you may be thinking).
Fortunately there are certain other useful functions that the AVR provides us
with such as on-board timers, senal interfaces, analogue comparators. and a
host of ‘flags’ which indicate whether or not something particular has happened,
which make life a lot easier. _

We will begin by looking at some basic concepts behind microcontrollers,
and quickly begin some example projects on the AT90S1200 (which we will call
1200 for short) and Tiny AVRs. Then intermediate operations will be intro-
duced, with the assistance of more advanced chips (such as the AT90S2313).

" Finally, some of the more advanced features will be discussed, with a final

project based around the 2313. Most of the projects can be easily adapted for
any type of AVR, so there is no need for you to go out and buy all the models.

Short bit for PIC users

A large number of readers will be familiar with the popular PIC microcon-
troller. For this reason I’ll mention briefly how AVRs can offer an improvement
to PICs. For those of you who don’t know what PICs are; don’t worry teo much
-if you don’t understand all this, it will all make sense later on!

Basically, the AVRs are based on a more advanced underlying architecture; :
and can execute an instruction every clock cycle (as opposed to PiCs which
execute on€ every four clock cycles). So for the same oscillator frequency, the

AVRs will run four times as fast. Furthermore they also offer 32 working regis” ;
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ters (cqmpared with the one that PICs have), and about three times as many
mstructions, so programs will almost always be shorter. It is worth notint’)
QO\Z?VCI’ thaf _although the datasheets boast 90~120 instructions, there is consigj
dxi':ﬁnectrie::;r;r;ozgd redundancy, and so in my .view there are more like 50

Further{nore, what are known as special function registers on PICs (and
known as mput/o_utput registers on the AVR) can be directly accessed with PICs
(e.g. you can write directly to the ports), and this cannot be done to the same
extent with .AYRS' However, these are minor quibbles, and AVR programs wil]
be more efficient on the whole. All AVRs have flash brogram memocry (so can
be rewrmep repeatedly). and finally. as the different PICs have been developed
over a period of many years there are some annoying compatibility issI:xeq
between some models which the AVRs have managea 10 avoid so far. )

Number systems

] . . . o . . -

t1s WOr th 1llUOdUCHlL’ at t}“S SIaL’C the dliICICl)l nu“lbex ng SyStCIlIS “]“Ch are
. . .

IHV()] Ved n AVR pl ()‘__(”a”l”l"]!_’

. : binary. decimal and hexadecimal. A binary
number is a ba:ve 2 number (i.c. there are only two types of digit (0 and 1)) as
opposed to decimal - base /0 — with 10 different digits (0 t0 9). Likewise hexa-
decimal represents base /6 so it has 16 different digits (0. 1.2.3,4.5.6 7' 8

9.A,B,C,D.E and ' : ; :
yetoms: and F). The table below shows how to count using the different

binary (8 digit) . decimal (3 digit) hexadecimal (2 digit)

00000000 000 00
00000001 001 01
00000010 . 002 .02
00000011 - 003 03
00000100 004 04
00000101 005 05
00000110 006 , 06
00000111 007 »
00001000 008 08
00001001 009 09
00001010 : 010 0A
00001011 011 0B
00001100 012 0C
00001101 013 oD
00001110 014 OE-'Z

00001111 015 OF
' 06010000 016 10
00010001 017 11
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The binary digit (or bit) furthest to the right is l§nown as the least significant
bit or Isb and also as bit 0 (the reason the numbering starts fron‘1 0 and‘not from
1 will soon become clear). Bit 0 shows the number of ‘ones’ in tf:e nur’nber.
One equals 29, The bit to its left (bir 1) repfesents the numt?er of ‘twos’, th?
next one (bit 2) shows the number of ‘fours’ and so on. Notice how two = 2
and four = 22, so the bit number corresponds to the power of two. w_hxgh that
bit represents, but note that the numbering goes from right to le_ft (this is very
often forgotten!). A sequence of 8 bits is known as a byte. The highest nu'mb_er
bit in a binary word (e.g. bit 7 in the case of a byte) is known as the most signif-
lcagctJ ‘i;t gl;iﬁ)out a decimal number in binary you could look for the largest
power of 2 that is smaller than that number and work your way down.

Example 1.1 Work out the binary equivalent of the decirzxal x_mmber 83.
Largest power of two less than 83 = 64 = 2% Bit6 = 1 )
This leaves 83 — 64 =19 32 is greater than 19 so bit 5 =0,

161slessthan 19sobit4 =1,

8 is greater than 3 so bit 3 =0,

4 is greater than 3 so bit 2 = 0.

2isless than 3so bit 1 =1,

1 equals 1 sobit0 =1,

This leaves 16 - 16 =3

This leaves 3 -2 = 1
So 1010011 is the binary equivalent.

There is. however, an alternative (and more subtle) method whif:h you may find
easier. Take the decimal number you want to convert anq divide it by two. If
there is a remainder of one (i.e. it was an odd number), write down a one. Then
divide the result and do the same writing the remaindgr to the left of the
previous value, until you end up dividing one by two, leaving a one.

Work out the binary equivalent of the decimal number 83.
Divide 83 by two. Leaves 41, remainder 1
Divide 41 by two. Leaves 20, remainder 1
Divide 20 by two. Leaves 10, remainder 0
Divide 10 by two. Leaves 3. remainder 0

Divide 5 by two. Leaves 2, remainder 1

Divide 2 b;' two. Leaves 1, remainder 0

Divide 1 by two. Leaves 0, remainder 1

Example 1.2

So 1010011 is the binary equivalent.

EXERCISE 1.1 Find the binary equivalent of the decimal number 199.

EXERCISE 1.2 Find the binary equivalent of the decimal number 170.

Introduction 5

Likewise, bit 0 of a hexadecimal is the number of ones (16° = 1) and bit 1 is the
number of 16s (16 = 16) etc. To convert decimal to hexadecimal (it is often

abbreviated 10 just ‘hex’) look at how many 16s there are in the number, and . ,

how many ones.

Example 1.3 Convert the decimal number 59 into hexadecimal. There are 3
16s in 59, leaving 59 —48 = 11. So bit 1 is 3. 11 is B in hexadecimal, so bit 0
is B. The number is therefore 3B.

EXERCISE 1.3 Find the hexadecimal equivalent of 199.
EXERCISE 1.4 Find the hexadecimal equivalent of 170.
One of the useful things about hexadecimal, which you may have picked up
from Exercise 1.4, is that it translates easily with binary. If you break up a

binary number into 4-bit groups (called nibbles, i.e. small bytes), these little
groups can individually be translated into 1 hex digit.

© Example 1.4 Convert 01101001 into hex. Split the number into nibbles: 0110

and 1001. It is easy to see 0110 translates as 4 + 2 = 6 and 1001 is 8 + =9
So the 8-bit number is 69 in hexadecimal. As you can see. this is much more

straightforward than with decimal. which is why hexadecimal is more
commonly used. '

EXERCISE 1.5 Convert 11100111 into a hexadecimal number.

Adding in binary

Binary addition behaves in exactly the same way as decimal addition. Examine
each pair of bits.

0+0=0

no carry
1+0=1 no carry
I+1=0 carry 1
1+0+0=1 no carry
1+1+0=0 carry |
1+1+1=1 carry |
Example 1.5 4+7=1]
1 2
0100
+ 0111

1011 = 11 in decimal
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EXERCISE 1.6 Find the result of 01011010 + 00001111 using binary addition.

Negative numbers

We have seen how positive decimal numbers trar}slate intp binary, buF }?ow do
we translate negative numbers? We have to sacrifice a bit towards giving the
number a sign, so for a 4-bit signed number, the range of values mnght‘ be -7 to
+8. There are various representations for negative numbers, mclgdmg mo's
complement. With this method. to make a positive number onto its negative
equivalent, you invert all the bits and then add one:

0111 =17

Invert all bits: 1000
Add one: 1001
1001 = -7

Example 1.6

1000 =8
Invert: 0111
Add one: 1000
1000 = -8 = +8

Example 1.7

FAIL!

As vou can see in Example 1.7. we cannot use —8 because itis indistinguishab‘lc
from +8. This asvmmetry is recognized as an unfortunate consequence of the
two's complement method. but it has been accepted as the Pest given the shqn-
comings of other methods of signing binary numbers. Let’s test these negative
numbers by looking at -2 + 7:

Example 1.8~ 2=10010 therefore -2 = 1110

1110 =-2
+0111 =7
0101 =5  Which is what we would expect!

ExERCISE 1.7  Find the 8-bit two’s complement representation of 40, and show
that —40 + 50 gives the expected result.

A result of this notation is that we can simply test thf: most signjﬁgant bit (msb)
to see whether a number is positive or negative. A 1 in the msp md:c_:ates anega-
tive number, and a 0 indicates positive. However, wher} dealing with t}ae result
of addition and subtraction with large positive or negative numbers, this can be

misleading.
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Example 1.9 69 +120= ...
1

01000101 =+ 69

+ 01111000=+120

10111101 =+ 189 or —67

In other words, in the two’s complement notation, we could interpret the result
as having the msb 1 and therefore negative. There is therefore a test for ‘two’s
complement overflow’ which we can use to determine the real sign of the result.
The ‘two’s complement overflow’ occurs when:

® both the msb’s of the numbers being addéd are 0 and the msb of the result
is 1

® both the msb’s of the numbers being added are 1 and the msb of the result
is 0

The real sign is therefore given by a combination of the ‘two’s complement
overflow’ result, and the state of the msb of the result:

Two's complement MSB of result Sign
overflow?

No 0 Positive
No ] Negative
Yes 0 Negative
Yes ] Positive

As you can see from Example 1.10, there is a two’s complement overflow, and
the msb of the result is 1, and so the sign of the answer is positive (+189) as we
would expect. You will be relieved to hear that much of this is handled auto-
matically by the AVR.

The ones complement is simply the result of inverting all the bits in a
number.

An 8-bit RISC Flash microcontroller?

We call the AVR an 8-bir microcontroller. This means it deals with numbers 8
bits long. The binary number 11111111 is the largest 8-bit number and equals
255 in decimal and FF in hex (work it out!). With AVR programming, different
notations are used to specify different numbering systems (the decimal number
11111111 is very different from the binary number’11111111)! A binary
number is shown like this: 0000101000 (i.e. Ob...). Decimal is the default
system, and the hexadecimal numbers are written with a 0x, or with a dollar
sign, like this: 0x3A or $3A. Therefore:

—
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0b00101011 is equivalent to 43 which is equivalent to 0x2B |
When dealing with the inputs and outputs of an A\{R, binqry is always used,
with each input or output pin corresponding to & parnculgr bit. A 1 corresponds
to what is known as logic I, meaning the pin of the AVR is at the supply \{oltage
(e.g. +5 V). A 0 shows that the pin is at logic 0, or 0 V. When used as inputs,
the boundary between reading a logic 0 and 2 logic 1 is half of the supply
voltage (e.g. +2.5 V). : ‘ . o

You will also hear the AVR called a RISC microcontroller. This means it is a
Reduced Instruction Set Computer, i.e. has relatively few instructions. Th¥s
makes life slightly harder for the programmer (vou or me). but the chip itself is
more simple and efficient. . .

The A\;)R is sometimes called a Flash microconmoller. This refers to the fgct
that the program you write for it is stored in Flash memory ~ memory which
can be written to again and again. Therefore you can keep reprogramming the

same AVR chip — for hobbyists this means one chip can go a long way.

Initial steps

The process of developing a program consists of five basic steps:

1. Select a particular AVR chip. and construct a program ﬂowcha;t
. Write program (using Notepad. AVR Studio. or some other suitable devel-
opment software) _ ' . . ’
3. Assemble program (changes what you've written into something an AVR
will understand) _
4. Simulate or Emulate the program to see whether or not it works
5. Program the AVR. This feeds what you’ve written into the actual AVR

28]

Let’s look at some of these in more detail.

Choosing your model

As there are so many different AVRs to choose from. it is important you thi?k
carefully about which one is right for your application. The name of the AVR
can tell you some information about what it has, e.g.:

AT90S1200

SRAM memory ‘size 0" = no SRAM

CPU model No. 0

EEPROM data memory ‘size 2° = 64 bytes
1 Kb of flash program memory

-
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Memory sizes:

01 2 3 4 5 6 7 8 9 A B
0 32 64 128 256 512 1K 2K 4K 8K 16K 32K
bytes bytes bytes bytes bytes

The meaning of these terms may not be familiar, but they will be covered
shortly. The Tiny and Mega family have slightly different systems. You can get

a decent overview of some of the AVRs and their properties by checking out
Appendix A.

EXERCISE 1.8  Deduce the memory properties of the AT90S8515.

One of the most important features of the AVR, which unfortunately is not
encoded in the model name. is the number of input and output pins. The 1200

has 15 input/output pins (i.e. they have 15 pins which can be used as inputs or
outputs), and the 8515 has up to 32!

Example 1.10  The brief is to design a device to count the number of times a
push button is pressed and display the value on a single seven segment display
— when the value reaches nine it resets. '

1. The seven segment display requires seven outputs
2. The push button requires one input

This project would therefore need a total of eight input/output pins. In this case
a 1200 would be used as it is one of the simplest models and has enough pins.

A useful trick when dealing with a large number of inputs and outputs is
called strobing. 1t is especially handy when using more than one seven segment
display. or when having to test many buttons. An example demonstrates it best.

Example 1.1]1 The brief is to design a counter which will add a number

between ! and 9 to the current two-digit value. There are therefore nine push
buttons and two seven segment displays.

1t would first appear that quite a few inputs and outputs are necessary:

1. The two seven segment displays require seven outputs each, thus a total
of 14

2. The push buttons require one input each. Creating a total of nine

The overall total is therefore 23 input/output pins, which would require a large
AVR such as the 8515 (which has 32 I/O pins); however, it would be unneces-
sary to use such a large one as this value can be cut significantly.

By strobing the buttons, they can all be read using only six pins, and the two -

/

R
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seven segment displays can be controlled by only nine. This creates a total of 15
input/output (or 1/0) pins, which would just fit on the 1200. Figure 1.2 shows ;
how it is done. -

By making the pin labelled PBO logic 1 (+5 V) and PB1, PB2 logic 0 (0 V), ’ ‘
switches 1, 4 and 7 are enabled. They can then be tested individually by exam-

ining pins PB3 to PB5. Thus by making PBO to PB2 logic 1 one by one, all the l_,—l _——
buttons can be examined individually. In order to work out how many 1/O pins N P , - l _l
vou will need for an array of X buttons, find the pair of factors of X which have aro

the smallest sum (e.g. for 24, 6 and 4 are the factors with the smallest sum.
hence 6 +4 = 10 1/O pins will be needed). It is better to make the smaller of the
two numbers (if indeed they are not the same) the number of outputs, and the
larger the number of inputs. This way the program takes less time to scroll
through all of the rows of buttons.

Strobing seven segment displays basically involves displaying a number on 0
one display for a short while, and then turning that display off while you display

.__.’
11

another number on another display. PD0 to PD6 contain the seven segment code 2 .—‘2‘55 ,,8_ é §§ e § § '
for both displays. and by making PB6 or PB7 logic 1. you can turn the indi- ki 8 g
vidual displays on. So the displays are in fact flashing on and off at high speed. &
giving the impression that they are constantly on. The programming require- 2z 8

H M . << -
ments of such an arrangement will be exam.mcd at a later stage. NEE T 2

. Sj*ocacaaa -

EXERCISE 1.9  With the help of Appendix A. work out which model AVR vou IRRRREAN <
would use for a four-digit calculator with buttons for digits 0-9 and five oper-

ations: +, -, X. +and = .

Flowchart

After you have worked out how many 1/0 pins you will need. and thus selected
a particular AVR, the next step is to create a program flowchart. This basically
forms the backbone of a program. and.it is much easier to write a program from
a flowchart than from scratch.

A flowchart should show the fundamental steps that the AVR must perform
and a clear program structure. Picture your program as a hedge maze. The flow-
. chart is a rough map showing key regions of the maze. When planning your
! flowchart you must note that the maze cannot lead off a cliff (i.e. the program
: 3 cannot simply end), or the AVR will run over the edge and crash. Instead the
AVR is doomed to navigate the maze indefinitely (although you can send it to

sleep!). A simple example of a flowchart is shown in Figure 1.3.

SW6

‘I-o

SW3

—O0 O

SW9
—o

SW5
SW8

sw2

Example 1.12 The flowchart for a program to turn an LED on lf a button is
being pressed.

SW7 -

Y

SW4

swi1
+—o

Figure 1.2

(The Set-up box represents some steps which must be taken as part of the start
W .. of every program, in order to set up various functions — this will be examined




Is button NO
pressed

YES
Turn on LED

Turn off LED

Figure 1.3

later.) Rectangles with rounded corners should bc used for start and finish

boxes. and diamond-shaped ones for decisions. Conditional jumps (the

diamond shaped boxes) indicate *if'somcthing happens. I/I('!l jump .'<omewhcrc’.

The amount of code any particular box will represent varies conmdcrably.. and
is really not important. The idea is to get the key stages. and come up with a
diagram that someone with no knowledge of programming would understand.
You will find it much easier to write a program from a flowchart, as you can
tackle each box separately, and not have to worry so much about the overall
structure.

EXERCISE 1.10 Challenge! Draw the flowchart for an alarm with three push
buttons. Once the device is triggered by a pressure sensor, the three buttons
must be pressed in the correct order, and within 10 sqconds, or else the alamj
will go off. If the buttons are pressed in time, the device returns to the state it
was in before being triggered. If the wrong code is pressc?d the alarn? is mg-’
gered. (The complexity of the answers will vary, but to give you an idea, my
answer has 13 boxes.)

Writing
Once you have finished the flowchart, the next step is to loafi up g_progr:;
template (such as the one suggested on page 19), and begin wnn]x:jgtz' "
program into it. This can be done on a basic text package such as No ]lnt
(the one that comes with Microsoft Windows®), or a dedicated developm
environment such as AVR Studio. :
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Assembling

When you have finished writing your program, it needs to be assembled before
it can be transferred onto a chip. This converts the program you’ve written into
a series of numbers which can be fed into the Flash Program Memory of the
AVR. This series of numbers is called the hex code or hex file — a hex file will
have .hex after its name. The assembler will examine your program line by line
and try to convert each line into the corresponding hex code. If, however. it fails
to recognize something in one of the lines of your code. it will register an error
for that line. An error is something which the assembler thinks is definirely
wrong — i.e. it can’t understand it. It may also register a warning - something
which is probably wrong, i.e. def; initely unusual but not necessarily wrong. All

this should be made much more clear when we actually assemble our first
program. ‘

Registers

One of the most important aspects to programming with AVRs and microcon-
trollers in general are the registers. 1 like to think of the AVR as having a large
filing cabinet with many drawers. cach containing an 8-bit number (a byte).
These drawers arc registers — more specif; ically we call these the //0 registers.
In addition to these 1/O registers. we have 32 ‘working” registers — these are
different because they are not part of the filing cabinet. Think of the working
registers as the filing assistants. and yourself as the boss. 1f you want something
put in the filing cabinet. you give it to the filing assistant, and then tell them to
put it in the cabinet. In the same way, the program writer cannot move a number
directly into an [/O register. Instead you must move the number into a working
register. and then copy the working register to the I/0 register. You can also ask
your filing assistants to do arithmetic etc. on the numbers they hold - i.e. you
can add numbers between working registers. Figure 1.4 shows the registers on
the 1200.

As you can see, each register is assigned a number. The working registers are
assigned numbers RO, R1. . . .. R31. Notice, however. that R30 and R31 are
slightly different. They represent a double register called Z - an extra long
register that can hold a 16-bit number (called a word). These are two filing
assistants that can be tied together. They can be referred to independently - ZL
and ZH - but can be fundamentally linked in that ZL (Z Lower) holds bits 0-7
of the 16-bit number, and ZH (Z Higher) holds bits 8-13,

Example 1.13 Vs

. ZH ZL — addonetoZL — ZH ZL
.00000000_ 11111111

00000001 00000000
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i
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TIMSK
GIMSK

Figure 1.4

$3B

L S3F

Example 1.14

ZH  ZL — addonetoZL — ZH ZL
11111111 11111111 00000000 00000000

Note that this linking only occurs with certain instructions. Assume that an
instruction doesn  have the linking property unless explicitly stated.

n s
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You will find it easier to give your working registers names (for the same
reason you don’t call your filing assistants by their staff numbers), and you will

be able to do this. It is sensible to give them a name according to the meaning - |

of the number they are holding. For example, if you were to use register R5 to
store the number of minutes that have passed, you might want to call it some-
thing like Minutes. You will be shown how to give names to your registers
shortly, when we look at the program template. We will also see later that the
working registers numbers R16-R31 are slightly more powerful than the
others.

The 1/O registers are also assigned numbers (0-63 in decimal, or $0-$3F in
hexadecimal). Each of these performs some specific function (e.g. count the
passage of time. or control serial communications etc.) and we will go through
the function of each one in due course. I will. however. highlight the functions
of PORTB, PORTD. PINB and PIND. These 1/O registers represent the ports —
the AVR s main link with the outside world. If you're wondering what happened
to Ports A and C. it’s not really very important. All four (A. B, C and D) appear
on larger types of AVR (e.g. 8515): smaller AVRs (e.g. 1200) have only two.
These two correspond to the two on larger AVRs that are called B and D. hence
their names.

Figurc 1.5 shows the pin layout of the 1200. Notice the pins labelled PBO0.
PBI... .. PB7. These are the Port B pins. Pins PD0O-PD6 are the Port D pins.
They can be read as inputs. or controlled as outputs. If behaving as an input.
rcading the binary number in PINB or PIND tells us the states of the pin. with
PBO corresponding to bit 0 in PINB etc. If the pin is high. the corresponding bit
is 1. and vice versa. Note that Port D doesn’t have the full 8 bits.

N
RESET [ ] 1 20 []vce
Poo [ ] 2 19 [7] PB7 (SCK)
po1 [] 3 18 [T] PB6 (MISO)
XTAL2 [] 4 17 [] PB5 (MOSH
XTALY [] 5 16 ") PB4
(INTO)PD2 [] 6 15 M) PB3
PD3 [] 7 14 [T]PB2
(ToypD4 [| 8 13 [7] PB1 (AIN1)
PD5S [] 9 12 [~} PBO (AINO)
GND [] 10 11 [7] PD6

Figure 1.5
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| >utton is being pressed at one time (in binary, decimal and hexadecimal)?
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Example 1.15  All of PBO-PB7 are inputs. They are connected to push buttons
which are in turn connected to the +5 V supply rail. When all the buttons are
pressed, the number in PINB is Ob11111111 or 255 in decimal. When gll
buttons except PB7 are pressed, the number in PINB is 0b01111111 or 127 in
decimal.

In a similar way, if the pin is an output its state is controlled by the corre-
sponding bit in the PORTx register. The-pins can sink or source 20 mA, and so
are capable of driving LEDs directly.

Example 1.16  All of PBO-PBT7 are outputs connected to LEDs. The other legs
of the LED:s are connected to ground (via resistors). To turn on all of the LED:s.
the number Ob11111111 is moved into PORTB. To turn off the middle two
LED:s. the number 0b11100111 is moved into PORTB.

exerCISE 1.11  Consider the example given above where all of PB0-PB7 are
connected to LEDs. We wish to create a chase of the eight LEDs (as shown in
Figure 1.6). and plan to move a series of numbers into PORTB one afier the
other to create this effect. What will these numbers be (in binary, decimal and

LO000000®

OOOO000®C

OOOOBOOO
OOOOOBOO
00000, @

Figure 1.6

:XERCISE 1.12  PDO, PD1 and PD2 are connected to push buttons which are'in
.urn connected to the +5 V supply rail. These push buttons are used in a
sontroller for a quiz show. What numbers in PIND indicate that more than one
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Instructions

We will now. begin looking at some instructions. These are summarized in -
Appendix C at the back of the book. AVRs generally have about a hundred

different instructions supported on them. This may sound quite daunting at first,
but you will be relieved to hear that there is a fair amount of repetition. In fact
there are only really about 40 that you really need to remember, and many are
quite easy to remember with familiar sounding names like add or jmp.
Fortunately, there a few general rules to help you decipher an unknown instruc-
tion. First. whenever you come across the letter i in an instruction. it will often
stand for immediate, i.e. the number which immediately follows the instruction
or 1/O register. A b will often stand for bit or branch (i.e. jump to a part of the
program). Let’s take a look at the format of an instruction line.

Example 1.17

(Label:) sbi portb, 0 ; turns on LED
The optibndl first part of the line is the label. This allows another part of the
program to jump to this line. Note that a label cannot start with a number. and

should not be given the same name as an instruction. or a file register (as this

will confuse the AVR greatly!). The label is always immediately followed by a

colon (this is easy to lcave off and can be a common source of errors if you
aren’t careful). Note that the label doesn’t actually have to be on the same line
as the instruction it’s labelling. For example, the following is just as valid:

Label:
sbi portb, 0 ; turns on LED

After the label comes the actual instruction: sbi, i.e. what you are doing, and
then comes what you are doing it fo: portb, 0 (these are called the operands).
Lastly. and just as important, is a semicolon followed by a comment on what
the line is actually doing in your own words. It is worth noting that you can
write whatever you want in an AVR program as long as it comes afier a semi-
colon. Otherwise the assembler will try to translate what you've written (e.g.
“turns on LED’) and obviously fail and register an ERROR. As the assembler
scans the program line by line, it skips to the next line when it encounters a
semicolon. i

I must stress how important it is to explain every ling you write, as shown
above. There are a number of reasons for this. First, wiat you’ve written may
make sense to you as you write it, but after a few coffee breaks, or a week later,
or a month later, you’ll be looking at the line and wondering what on earth you
were intending to do. Second, you may well be showing your program to other
people for advice. I am sent programs that, with alarming regularity, contain

e

e R
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very few or in some cases no comments at all. There is not much one can do in
this situation, as it is almost impossible to deduce the intended operatign of the
program by looking at the bare code. Writing good comments is not necessarily
easy — they should be very clear, but not too long. It is particularly worth
avoiding falling into the habit of just copying out the meaning of the line..

Example 1.18

sbi PortB, 0 : sets bit 0 of register PortB

A comment like the one above means very little at all. as it doesn’t tell you wiy
you’re setting bit 0 of register PortB, which after all is what the comment is
really about. If you want to get an overview of all the instructions offered, have
a good look at Appendix C and you can get a feel of how the different instruc-
tions are arranged. They will be introduced one by one through the example
projects which follow.

Program template

Most programs will have a certain overall structure, and there are certain
common elements needed for all programs to work. To make life easier. there-
fore, we can put together a program template, save it, and then load it every time
we want to start writing a program. A template that I like to use is shown in
Figure 1.7.

The box made up of asterisks at the top of the template is the program header
(the asterisks are there purely for decorative purposes). Filling these in makes it
easier to find out what the program is without having to scroll down and read
the code and it helps you ensure that you are working on the most up-to-date
version of your program. Note that the contents of the box have no bearing on
the actual functioning of your program, as all the lines are preceded by semi-
colons. The ‘clock frequency:’ line refers to the frequency of the oscillator (e.g.
crystal) that you have connected to the chip. The AVR needs a steady signal to
tell it when to move on to the next instruction, and so executes an instruction
for every oscillation (or clock cycle). Therefore, if you have connected a 4 MHz
crystal to the chip, it should execute about 4 million instructions per second.
Note that I say about 4 million, because some instructions (typically the ones
which involve jumping around in the program) take two clock cycles. ‘for
AVR:’ refers to which particular AVR the program is written for. You will also
need to specify this further down.

Now we get to the lines which actually do something. .device is a directive
(an instruction to the assembler) which tells the assembler which device you are
using. For example, if you were writing this for the 1200 chip, the complete line
would be:
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;*** Ak 3k sk ok 3% 3% 2k 36 3k ok 3k ko koK kR ok

|5 written b
; date: *
; version: *
; file saved as: *
; for AVR: *
; clock frequency: *
H * %K%K 2k 3k che 3K ke 3k 3 ok ok 3K ke 3K 25¢ 3K S 3k ok ke ofe ke ok e sk ok s
3 Program Function: ;. S, 7/
’ . - }[ >q‘-. ﬁi ’r!:
.device XXXXXXXX \,_ !
.nolist -
.include “C:\Program Files\Atmel\A VR Studio\A ppnotes\xxxxxx.inc”

Wist

;s Declarations:

.def temp =rl6

3 Start of Program

rjmp Init : first line executed

temp, Obxxxxxxxx ; Sets up inputs and outputs on PortB

out DDRB, temp 3

Idi temp, Obxxxxxxxx ; Sets up inputs and outputs on PortD
out DDRD, temp 3

Idi temp, Obxxxxxxxx ; Sets pulls ups for inputs of PortB

out PortB, temp ;5 and the initial states for the outputs
Idi temp, Obxxxxxxxx ; Sets pulls ups for inputs of PortD

out PortD, temp 5 and the initial states for the outputs

; Main body of program:
Start:
<write your program here>

rjmp Start ; loops back to Start ./

Figure 1.7
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.device at90s1200 N

i rtant directive is .include, which enables the assembler.to load
Qggtthiesrli;?: Zs a look-up file. Th?s is like a translator dictionary for th.e
assembler. The assembler will understand most of the terms you write, but it
may need to Jook up the translations of others. For example, all the names of the
input/output registers and their addresses are stored in the'look-up file, so
instead of referring to $3F, vou can refer to SREG. When you install t.he assem-
bler on your computer, it should come with these files and put them in a direc-
tory. I have included the path that appears on my own computer but yours may
well be different, Again, if the 1200 was being used, the complete line would
be:

.nclude “C:\Program Files\Atmel\AVR Studio\Appnotes\1200def.inc”

Finally I'll say a little about .nolist and .list. As th.e as;emblcr reads your code.
it can produce what is known as a list file, which 1pc]udes a copy of yocl;r
program complete with the assembler’s comments on it By 'and large. yOU. do
not want this list file also to include the lengthy look-up file. You therefore w rite
.nolist before the .inctude directive. which tclls the assembler to stop copying
things to the list file, and then vou write .list after the .include line to tell the
assembler 10 resume copying things to the list file. In summary. therefore, the
.nolist and .list lines don't actually change the working qfthg program. but they
will make your list file tidier. We will see more about list files when we begin
our first program. ' .

After the general headings, there is a space to specify some declarations.
These are your own additions to the assembler’s Franslator dlf:nonary.—— your
opportunities to give more useful names to the registers you \'Vlll be using. Ilf?r
example, | always use a working register called temp for menial ta§ks, anq ve
assigned this name to R16. You can define the names of the working registers
using the .def directive, as shown in the template. Another type of dccl‘ax;atlon
that can be used to generally give a numerical value to a word is .equ.‘Thns can
be used to give your own names to 1/0 registers. For exarr_lple. 1 mlght‘ha\'e
connected a seven segment display to all of Port B, and decldeq that 1 wxs}x 10
be able to write DisplayPort when referring to PortB. PortB is 1/O register
number 0x18, so I might write DisplavPort in the program and the assembler
will interpret it as PortB:

PortB or
0x18

.equ DisplayPort
£qu DisplayPort

i

Another example of where this might be useful is wberc a particu!ar nu}nber 1;
used at different points in the program, and you mxght be e.xper'lmcntmg a:i 0
changing this number. You could use the .equ directive to give a’name to this
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number, and simply refer to the name in the rest of the program. When you then
g0 to change the number, you need only change the value in the .equ line, and
not in all the instances of the use of the number all over the program. For the
moment, however, we will not be using the .equ directive.

After the declarations, we have the first line executed by the chip on power-
up or reset. In this line I suggest jumping to a section called Init which sets up
all the initial settings of the AVR. This uses the rjmp instruction:

rjimp  Init 5
This stands for relative jump. In other words if makes the chip jump to a section
of the program which you have labelled Init. The reason why it is a relative
Jump is in the way the assembler interprets the instruction, and so is not really
important to understand. Say. for example. that the Init section itself was 40
instructions further on from the rimp Init line. the assembler would inter-
pret the line as saying “jump forward 40 instructions” - i.e. a jump relarive 10
the original instruction. Basically it is far easier to think of it as simply jumping
{o Init.

The first part of the Init section sets which pins are going to act as mputs,
and which as outputs. This is done using the Data Direction 1/O regislers:
DDRB and DDRD. Each bit in these registers corresponds 10 a pin on the chip.
For example. bit 4 of DDRB corresponds to pin PB4. and bit 2 of DDRD corre-
sponds to pin PD2. Now. sctting the relative DDRx bit high makes the pin an
ouiput. and making the bit Jow makes the pin an input.;.. .

If we configure a pin as an input: we then have the option of selecting
whether the input has a built-in pull-up resistor or not. This may save us the
trouble of having to include an external resistor. In order to enable the puli-ups
make the relevant bit in PORTx high; however, if you do not want them make
sure you disable them by making the relevant bit in PORTx Jow. For the outputs.
we want to begin with the outputs in some sort of start state (e.g. all off). and
so for the output pins. make the relevant bits in PORTx high or low depending
on how you wish them 1o start. An exampie should clear things up.

Example 1.19  Using a 1200 chip, pins PB0, PB4 and PB7 are connected o

~ push buttons. We would like pull-ups on PB4 and PB7 only. Pins PDO to PD6

are connected to a seven segment display, and all other pins are not connected.
All outputs should initially be-off. What numbers should be written to DDRB,
DDRD, PortB. and PortD to correctly specify the actions of the AVRs pins?
» v

First, look at inputs and outputs. PB0, 4 and 7 are 'inputs, the rest are not
connected (hence set as outputs). The number for DDRB is therefore
0b01101110. For Port D, all pins are outputs or not connected, hence the
number for DDRD is 0b1111111.

To enable pull-ups for PB4 and PB7, make PortB, 4 and PortB, 7 high, all
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other outputs are initially low, so the number for PortB is 0b10010000. All the
outputs are low for Port D, so the number for PortD is 0600000000. -

We can’t move these numbers directly into the 1/0 registers, but instead we
have first to move them into a working register (such as temp), and then output
the working register to the 1/0 register. There are a number of ways we can do
this: .

1di register, number H

This loads the immediate number into a register, but it is very important to note
that this instruction cannot be used on all working registers — only on those
berween R16 and R31 (we can therefore still use it on temp. as that is R16). We
can also use a couple of alternatives to this instruction if the number we wish to
move into the register happens to be 0 or 255/0xFF/0bl11111111: -

clr register H

This clears the contents of a register (moves 0 into it) — note an advantage of
this over Idi is that it can operate on all working registers. Finally.

ser register

This sets the contents of a register (moves 255/0xFF/0b1111111 into it). though
like Idi. it only works on registers benween R16 and R31.

We then need to move temp into the 1/0 register. using the following instruc-
tion:

out ioreg, reg

This moves a number out from a register. into an 1/O register. Make sure you
note the order of the operands in the instruction - 1/O register first, working
register second. it is easy. 10 get them the wrong way round! We can therefore
see that the eight lines of the Init section move numbers into DDRB. DDRD.
PortB and PortD via temp.

EXERCISE 1.13  Using a 1200 chip, pin PBO is connected to a pressure sensor.
and pins PB1, PB2 and PB3 control red, yellow and green LEDs respectively.
PDO to PD3 carry signals to an infrared transmitter, and PD4-PD6 carry signals
from an infrared receiver. All other pins are not connected. All outputs should
initially be off, and PBO should have a pull-up enabled. Write the eight lines that
will make up the Init section for this program.

After finishing the Init section, the program moves on to the main body of the
program labelled Start. This is where the bulk of the program will lie. Note that

R VR
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the program ends with the line rjmp

to Start, but it does have to keep looping
this last line accordingly. At the end of t
the assembler to stop assembling the file

Start. It needn’t necessarily loop back
to something, so you may want to alter -
he program, you can write .exit to tell
, but this isn’t necessary as it will stop

assembling anyway once it reaches the end of the file. .




2 .
Basic operations with
AT90S1200 and TINY12

The best way to leam is through example and by doing things yourself. For the
rest of the book we will cover example projects, many of which will be largely
written by you. For this to work most effectively, it helps if you actually try these
programs, writing them out as you go along in Notepad. or whatever develop-
ment environment you're using. If you don’t have any special AVR software at
the moment. you can still write the programs out in Notepad and test them later.

First of all. copy out the program template covered in the previous chapter.
adjusting it as you see fit, and save it as template.asm. If you are using
Notepad, make sure you select File Type as 4Any File. The .asm file exiension
refers to assembly source. i.e. that which will be assembled.

Program A: LEDon

o Controlling outputs

Our first few programs will use the 1200 chip. Load up the template, Save As
to keep the original template unchanged, and call the file ledon.asm. Make the
,appropriate adjustments to the headers etc. relevant to the 1200 chip (header.
.device, and .include). This first program is simply going to turn on an LED
(and keep it on). The first step is to assign inputs and outputs. For this project
we will need only one output, and will connect it to RBO. The second step in the
design is the flowchart. This is shown in Figure 2.1. From this we can now write
our program. The first box (Set-up) is performed in the Init routine. You should
be able to complete this section yourself (remember, if a pin is not connected.
make it an output).
[ Set-up }

»
)

Turn on LED

Figure 2.1
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The second box involves turning on the LED. which means making RBO
high, which means setting bit 0 on PORTB to 1. To do this we could move a
number into temp, and then move that number into PortB; however, there is.a
shortcut. We can use the following instruction:

sbi - ioreg, bit 5

This sets a bit in an I/0 register. Although you cannot move a number directly
into an 1/0 register, vou can set and clear the bits in some of them individually.
You cannor set and clear individual bits in /O registers 32—63 (S$20-S$3F in
hex). Fortunately. PortB ($18) and indeed all the PORTx and PINx registers can
be controlled in this fashion. The equivalent instruction for clearing the bit is:

cbi ioreg, bit :

This clears a bit in an 1/O register. though remember this only works for 1/0
registers 0-31. For cur particular application. we will want to set PortB, 0 and
so will use the following instruction at the point labelled Start:

PortB. 0

Start: sbi s turns on the LED v

The next hine 1s:

rimp  Start : loops back to Start

This means the chip will be in an indefinite loop. turning on the LED. The
program is now ready to be assembled. You can check that you've done every-
thing right by looking at the complete program in Appendix J under Program A.
All subsequent programs will be printed in the back in the same way. We will
now assemble the program. but if you do not have the relevant software just read
through the next section. You can download AVR Studio from Atmel's website
(www.atmel.com). for free (last time | checked). This assembles. simulates and
(with the right hardware) allows you to programthe AVR chip.

AVR Studio — assembling

First of all load AVR Studio. Select Project — New Project and give it a name
(e.g. LEDon), pick a suitable location, and choose AVR Assembler in the
bottom box. In your project you can have assembly files, and other files. The
program you have just written is an assembly file (-asm)“nd so you will have
to add it to the project. Right click on Assembly Files in the Project Window

- and choose Add File. Find your original saved LEDon.asm and select it. You

: should now see your file in the Project Window. Now press F7 or go to Project .

— Assemble and your file will be assembled. Hopefully your file should
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assemble with no errors. If errors are produced, you will find it helpful 1o
examine the List File (*.1st). Load this up in Notepad, or some other text editor
and scan the document for errors, In this simple program, it is probably nothing
more than a spelling mistake. Correct any problems and then move on to
testing.

Testing

There are three main ways to test your program:

‘1. Simulating

2. Emulating
3. Programming an actual AVR and putting it in a circuit

The first of these, simulating, is entirely software based. A piece of software
pretends it’s an AVR and shows you how it thinks the program would run,
showing you how the registers are changing etc. You can also pretend to give it
inputs by manually changing the numbers in PINB etc. You can get a good idea
of whether or not the key concepts behind your program will work with this
kind of testing. but other real-word factors such as button-bounce cannot be
tested. Atmel’s AVR Simulator comes with AVR Studio.

AVR Studio = simulating

We will now have a go at simulating the LEDon program. After you assemble

" your .asm file, double click on it in the Project Window to open it. Some of the

buttons at the top of the screen should now become active. There are three key
buttons involved in stepping through your program. The most useful one of
these, i} , is called Trace Into or Step Into. This runs the current line of your
program. Pressing this once will begin-the simulation and should highlight the
first line of your program (rjmp Init). You can use this button (or its
shortcut F11) to step through your program. We will see the importance of the
other stepping buttons when we look at subroutines later on in the book. In
order for this simulation to tell us anything useful. we need to look at how the
1/O registers are changing (in particular bit 0 of PortB). This can be done by
going to View — New 10 View. You can see that the 1/O registers have been
grouped into categories. Expand the PortB category and this shows you the
PortB, DDRB and PinB registers. You can also view the working registers by
going to View — Registers. We will be watching R16 in particular, as this 1s
temp. Another useful shortcut is the reset button, (2% (Shift + F5).

Continue stepping through your program. Notice how temp gets cleared to
00, PortB and PortD are also cleared to 00, then temp is loaded with OXFF
gil;:é{ 11)}}1_), which is then loaded in DDRB and DDRD. Then (crucially)

“ﬂ_?ﬁ‘s set, as shown by the tick in the appropriate box. You may notice

§505-
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how this will automatically set PinB, bit 0 as well. Remember the difference
between PortB and PinB — PortB is a register representing what you wish to
output through the port, and PinB represents the actual, physical state of those
pins. For example, you could try to make an input high when the pin is acci-
dentally shorted to ground — PortB would have that bit high whilst PinB would
show the bit low, as the pin was being pulled low. '

Emulating

Emulating can be far more helpful in pinning down bugs, and gives you a much
more visual indication of the working of the program. This allows you to
connect a probe with an end that looks like an AVR chip to your computer. The
emulator software then makes the probe behave exactly like an AVR chip
running your program. Putting this probe into your circuit should give you the
same result as putting areal AVR in, the great difference being that you can step
through the program slowly, and see the inner workings (registers etc.)
changing. In this way you are testing the program and the circuit board, and the
way they work together. Unfortunately. emulators can be expensive — a sample
emulator 1s Atmel’s ICE (In-Circuit Emulator).

If you dont have an emulator. or after you've finished emulating. you will

have to program a real AVR chip and put it in your circuit or testing board. One
of the great benefits of AVRs is the Flash memory which allows you to keep
reprogramming the same chip. so you can quite happily program your AVR, see
if it works, make some program adjustments. and then program it again with the
new, improved code.
* For these latter two testing methods you obviously need some sort of circuit
or development board. If you are making your own circuit, you will need to
ensure certain pins on the chip are wired up correctly. We will now examine
how this is done.

Hardware

Figure 2.2 shows the 1200 chip. You will already be familiar with the PBx and
PDx pins: however, there are other pins with specific functions. VCC is the -
positive supply pin, and in the case of the 1200 chip needs between 2.7 and
6.0 V. The allowed voltage range depends on the chip, but a value between 4 and
5V is generally safe. GND is the ground (0 V) pin. There is also a Reset pin.
The bar over the top means that it is active low, in other words to make the AVR
reset you need to make this pin Jow (for at least 50 ns). Thergfore, if we wanted
a reset button, we could use an arrangement similar to that:Shown in Figure 2.3.
The power supply to the circuit is likely to take a short time to stabilize once
first turned on, and crystal oscillators need a ‘warm-up’ time before they
assume regular oscillations, and so it is necessary to make the AVR wait a short
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Figure 2.3

litile delay is built into the AVR (lasting about 11 ms); however, if you have a
particularly bad power supply or oscillator, and want to extend the length of this
‘groggy morning feeling’ delay you can do so with a circuit such as that shown
in’Figure 2.4. Increase the value of C1 to increase the delay:

i
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Figure 2.4

Finally, pins XTALI and XTAL2. as their names suggest, are wired to a
crystal (or ceramic oscillator) which is going to provide the AVR with the
steady pulse it needs in order to know when to move on 1o the next instruction.
The faster the crystal, the faster the AVR will run through the program. though,

‘there are maximum frequencies for different models. This maximum is gener-
-ally between 4 and 8§ MHz. though the 1200 we are using in this chapter can run

at speeds up 1o 12 MHz! Note that on some AVRs (in particular the Tiny AVRs

- and the 1200). there is a built-in oscillator of 1 MHz. which means you don't

need a crystal. This internal oscillator is based on a resistor—capacitor arrange-
ment, and is therefore less accurate and more susceptible to temperature varia-
tions etc.; however. if timing accuracy isn’t an issue, it is handy to free up space

_on the circuit board and just use the internal oscillator. Figure 2.5 shows how’

you would-wire up a crystal (or ceramic oscillator) to the two XTAL pins.
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If you would like to synchronize your AVR with another device, or al.ready
have a clock line with high-speed oscillations on it, you may want to ‘s.lmp‘ly
feed the AVR with an external oscillator signal. To do thi‘s, connect the oscil-
lator signal to XTALL1, and leave XTAL2 unconnected. Fxgure 2.6 shows .how
using an HC (high-speed CMOS) buffer you can synchronize two AVR chips.
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Figure 2.6

AVR Studio - programming

In order to test a programmed AVR, you will need a circuit board or develop-
ment board. The simplest solution is to make up the circuit boards as you need
them. but you may find it quicker to construct-your own devclopmgnt boqrd to
cover a number of the projects covered in this book. The required circuit
diagram for the LEDon program is shown in Figure 2.7.
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Figure 2.7
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If you have a development board, you may need to check how the LEDs are
wired up. We have been assuming the pins will source the LED’s current (i.e.

turn the pin high to turn on the LED). If your circuit board is configured such -

that the pin is sinking the LED’s current, you will have to make changes to the
software. In this case, a 0 will furn on the LED and a ] will turn off the LED.
Therefore, instead of starting with all of PortB set to O at the start of the Init
section, you will want to move Ob11111111 into PortB (to turn off all the
LEDs). You will also have to clear PortB. bit 0 rather than set it, in order to turn
on the LED. This can be done using the ¢bi instruction in place of sbi.

Also note that although the program has been written with the 1200 in mind.
by choosing the simplest model AVR we have made the program compatible
with all other models (assuming they have sufficient /0 pins). Therefore if vou
have an 8515 (which comes with some development kits). simply change the
.device and .include lines in your program and it should work.

We will now program the device using the STK500 Starter Kit. The steps
required with the other types of programmer should not vary too much from
these. To program your device. place the chip into the appropriate socket in the
programming board. You many need to change the jumper cables to selcct the
correct chip. In AVR Studio sclect Tools — STKS500. and choosc the relevant
device (at90s1200). You will be programming the Flash Program memory. If
you've just been simulating and vour program is still in the simulator memory.
vou can tck thc box labclled Use Current Simulator/Emulator Flash
Memory. and then hit Program. If the program isn’t in the Simulator’Emulator
Memory, just load the program. assemble it. start the simulator, and it will be.

" Fuse bits

- You may notice some other tabs in the programming window. The one labelled

fuses enables you to control some of the hardware characteristics of the AVR.
These fuses vary between different models. For the 1200 we have two fuses
available. RCEN should be set if you are using the internal RC .oscillator as
your clock. If you are using an external clock such as a crystal (as indeed we
are in this project), this fuse bit should be clear. The other fuse is SPIEN. Seria/
Program Downloading. which allows you to read the program back off the chip.
If you want to keep your program to vourself and don’t want others to be able
to read it off the chip, make sure this fuse bit is clear. :

.All this just to see an LED turn on may seem a bit of an anticlimax, but there
are greater things to come!

: 7
Programs B and C: push button )

¢ Testing inputs
@ Controlling outputs
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+ will now examine how to test inputs and use this to control an output. Again,
-« project will be quite simple — a push buqog and an LED which turns on
-en the button is pressed, and turns off when it is released. There are two main
wvs in which we can test an input:

Test a particular bit in PINx using the sbic or sbis instructions
Read the entire number from PINX into a register using the in instructicn

"¢ push button will be connected between PD0 and 0V, and the LED to PBO.
“-2 flowchart is shown in Figurc 1.3, and the circuit diagram in Figure 2.8.
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Figure 2.8

You should be able to write the Init section yourself, noting that as there is
no external pull-up resistor shown in the circuit diagram. we need to enable the
internal pull-up for PDO. The beginning of the program will look at testing to
wce if the push button has been pressed. We-have two instructions at our

disposal:
sbic ~  ioreg, bit H

This tests a bit in a I/O register and skips the following line if the bit is clear.
Similarly

sbis ioreg, bit 5

(csts a bit in a I/O register and skips the following line if the bit is set. Note that
like sbi and cbi, these two instructions operate only on L/O. registers numbered

between 0 and 31 (80=$1F). Fortunately, PIND, the register we wiﬂ be testing?__
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is one of these registers (number $10). So to test our push button (which makes
pin PDO high when it is pressed), we write:

sbis  PinD, 0 ; tests the push button

This instruction will make the AVR skip the next instruction if PDQ is high.
Therefore the line below this one is only executed if the button is not pressed.
This line should then turn off the LED, and so we will make the AVR jump to a
section labelled LEDoff:

rjmp LEDoff : jumps to the section labelled LEDoff

After this line is an instruction which is executed only when the button is
pressed. This line should therefore turn the LED on, and we can use the same
instruction as last time. :

EXERCISE 2.1 Write the nwvo instructions which turn the LED on. and then loop
back to Start to test the button again.

This leaves us with the section labelied LEDofT. N

EXERCISE 2.2 Write the nvo instructions which turn the LED off. and then Joop
back to Start.

You have -now finished writing the program, and can double check you have
everything correct by looking at Program B in Appendix J. You can then go
through the steps given for testing and programming Program A. While you are
doing your simulation. you can simulate the button being pressed by simply
checking the box for PIND, bit 0 in the 1/0 registers window.

Sometimes it helps to step back from the problem and look at it in a different
light. Instead of looking at the button and LED as separate bits in the two ports,
let’s look at them with respect to how they affect the entire number in the ports.

- When the push bution is pressed, the number in PinD is 0600000000, and in this
case we want the LED to turn on (i.e. make the number in PortB 0b00000000).
When the push button isn’t pressed. PinD is 0b00000001 and thus we want
PortB to be 0b00000001. So instead of testing using the individual bits we are
‘going to use the entire number held in the file register. The entire program
merely involves moving the number that is in PinD into PortB. This cannot be

following instruction: :

in register, ioreg 5

-This copies the number from an IO register into a working register. To move
s - : ““ ) ) .

done directly, and so we will first have to read the numb/gr out of PinD using the
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the number from a working register back out to an I/O register, we use the out

instruction. The entire program can therefore consist of: Y
Start: in temp, PinD ; reads button

out PortB, temp ; controls LED

rjmp  Start ; loops back

This shorter program is shown as Program C.

Seven segment displays and indirsct addressing

Using an AVR to control seven segment displays rather than using a separate
decoder chip allows you to display whatever you want on them. Obviously all
the numbers can be displayed. but also most letters: A, b, ¢, C,d. E, F, G. h. H.
.1, LLnoOPFrS tty UyandZ

The pins of the seven segment display should all be connected to the same
port, in any order (this may make PCB design easier). The spare bit may be used
for the dot on the display. Make a note of which segments (a. b, c etc.) are
connected to which bits. The segments on a seven segment display are labelled

" as shown in Figure 2.9..

a

Figure 2.9

Example 2.1 Port B Bit 7=d, Bit 6 = a, Bit 5=c, Bit4 =g, Bit 3=b, Bit 2
= f, and Bit 1 =e. I have assigned the letters to bits in a random order to illus-
trate it doesn’t matter how you wire them-up. Sometimes you will find that due
to physical PCB restrictions there are some configurations that are easier or
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more compact than others. The software is easy to change — the hardware
normally less so.

1f the display is wired up as described in Example 2.1, the number to be moved

into Port B when something is to be displayed should be in the format dacgbfe-
(it doesn’t matier what bit 0 is as it isn’t connected to the display), where the
value associated with each letter corresponds to the required state of the pin
going to that particular segment.

So if you are using a common cathode display (i.e. make the segments high
for them to turn on - see Figure 2.10), and you want to display (for example)
the letter A. you would turn on segments: a, b. c, e. f and g. ‘

COMMON CATHODE COMMON ANODE
A rf,‘ A "%A
W N
B @ B ‘%A
W K
c l\é c %1
Y K
02 D R, _
% COMMON K COMMON
E r({ E %‘
7 K
F F
— k
¢ 2 c®
W K
poTd po,
i .‘ N

Figure 2.10

Given the situation in Example 2.1, where the segments are arranged
dacgbfe- along Port B, the number to be moved into PortB t6 display an A
would be 0b01111110. Bit 0 has been made 0, as it is not connected to the
display. ) .
A
Example 2.2 If the segments of a common cathode display are arranged
dacgbfe- along Port B, what number should be moved into PortB, to display the
letter C, and the letter E? '

bbb e
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The letter C requires segments a, d, e and {. so the number to be moved into Port
B would be 0b11000110. The letter E requires segments a, d, e, fand g so the
number to be moved into Port B would be 0b11016110.

EXERCISE 2.3 If the segments are arranged abcdefg- along Port B, what
number should be moved into PortB to display the numbers 0, 1, 2, 3, 4, 5, 6,
7,8,9,A,b,c,d Eand F.

The process of converting a number into a seven segment code can be carried
out in various ways, but by far the simplest involves using a /ook-up table. The
key idea behind a look-up table is indirect addressing. So far we have l?een
dealing with direct addressing. i.e. if we want to read a number from register
numb:;r 4, we simply read register number 4. Indirect addressing involves
reading a number from register number X. where X is given in a different
register, called Z (the 2-bvte register spread over R30 and R31).

t’s a bit like sending a letter. where the letter is the contents of a working
register (R0-R31). and the address is given by the number in Z.

Example 2.3 Move the number 00 into working registers numbers R0 to R29.

Rather than writing:

cir RO : clears RO
clr R1 : clears Ri
“cir R2 . clears R2
etc.

cir R29

: clears R29

we can use indirect addressing to complete the job in fewer lines. The first
address we want to write to is RO (address 0), so we should move 00 into Z
(making O the address on the letter). Z. remember. is spread over both ZL and
ZH (the higher and Jower bytes of Z), so we need 1o clear them both:

clr ZL
cdr . ZH

: clears ZL
; clears ZH

We then need to set up a register with the number 0 so we can send it ‘by post™

to the other registers. We already have a register with a 0 (ZH), so we will use
that.

st register, Z H

This indirectly stores (sends) the value in register to the address pointed to by

Z. Therefore the instruction:
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st ZH,Z H

sends the number in ZH (0) to the address given by Z (also 0), and so effec-.
tively clears RO. We now want to clear R1, and so we simply increment Z to

point to address 01 (i.e. R1). The program then loops back to cycle through all
the registers, clearing them all in far fewer lines that if we were using direct
addressing. All we need to do is test to see when ZL reaches 30, as this is past
the hxohest address we wish to clear.

How do we tell when ZL reaches 30? We subtract 30 from it and see whether
or not the result is zero. If ZL is 30. then when we subtract 30 from it the result
will be 0. We don’t want to actually subtract 30 from ZL. or it will start going
backwards fast! Instead we use one of the compare instructions:

cp register. register H

This *compares” the number in one register with that in another (actually
subtracts one register from the other whllct leaving both unchanged). We then
need to see if the result 1s zero. We can do this by looking at the zero flag. There
arc a number of flags held in the SREG register (S3F). thcsc arc automatically
sct and cleared decndm" on the result of certain operations. The zero flag is

sct when the result of an operation is zero. Theére are two Ways 10 test the zero
flag:

brbs  label. bit

-

. This branches to another part of the program if a bit in SREG is sct (the zero

flag is bit 1. and so bit would have tobe a | ). Note that the label has 10 be within
63 instructions of the original instruction. Similarly.

brbc  label. bit :
This branches to another part of the program if a bit in SREG is clear. Here is
where some of the instruction redundancy comes in. because as well as this

general instruction for testing a bit in SREG. each bit has its own particular
instruction. In this case. for the zero flag:

breq label . s

which stands for branch if equal {more specxflcally branch if the zero flag is
set). The opposite of this is: ;

brne label . :

which stands for branch if not equal (more specifically, branch if the zero flag
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. is clear). The complete set of redundant/non-critical instructions is shown in
' Appendix C, along with their equivalent instructions. To compare a register
i with a number (rather than another register), we use the instruction:

cpi register, number 5

Please note that this only works on registers R16—-R31.but as ZL is R30 we are
all right. The complete set of instructions to clear registers R0 to R29 is there-

. fore:
: clr ZL ; clears ZL
clr ZH ; clears ZH
ClearLoop: st "ZH, Z 1 clears indirect address
inc ZL " : moves on to next address

; compares ZL with 30

cpi 7L, 30
; branches to ClearLoop if ZL = 30

brne < ~arLoop

This six line instruction set is useful to put in the Init subroutine to systemat-
ically clear a large number of file registers. You can adjust the starting and
finishing addresses by changing the initial value of ZL and the final value vou
are testing for: note. however. that vou don't want to clear ZL .in the loop (i.c.
don’t go past 30) because otherwise vou will be stuck in an endless loop (think

about it).

EXERCISE 2.4 Challenge! What six lines will writeaOto RO.a 1 toRl.a 210
R2 etc. all the way toa 15 to R15?

As well as writing indirectly, we can also read indirectly:

.

id register, Z | 3

This indirectly loads into register the value at the address pointed to by Z. We
| therefore have a table of numbers kept in a set of consecutive memory
' addresses, and by varying Z we can read off different values. Say. for example.
we keep the codes for the seven segment digits 0-9 in working registers
R20-R29. We then move 20 into Z (to ‘zero’ it to point at the bottom of the
table) and then add the number we wish to convert to Z. Reading indirectly into
temp we then get the seven segment code for that number:

s zeros ZL to R20

; adds digit to ZL

; reads Rx into temp

; outputs temp to Port B

Idi 721,20
. add ZL, digit
Id ~ temp,Z
out PortB, temp

r._,';{;gg'g:.at‘aove code translates the number in digit into a'seven segment code which

P w—
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is then outputted through Port B. N i
. g - Note that you will hav ri
the registers in the first place: d : © [0 vmte the code to

1di R20, 0b11111100
ldi R21, 0b01100000
etc.

Idi R29, 0b11110110

; code for 0
; code for 1

; code for 9

Note that using working registers for thi i i

wasteful.‘but as there is no other SRAM ole txl)llelql)gf)ef) :eu;aiiuilo‘azd .mdeed
other chips that do have SRAM, we can’ use that for look-cu Ol(t:el;lon
Furthermore. on other chips there is also an instruction Ipm, which alI; ra o
to use the Program Memory for look-up tables as well M‘ore h'o“'S The
Logic Gate Simulator project on page 67. . on fHls in the

Programs D and E: counter

e Testing inputs
® Seven segment displays
Our next project will be a counter. It wi - .
) -1t will count the number of times
g::;xllc;r; is pres—;gd from 0 to 9. After 10 counts (when it passes 9), the cifxﬁse]:
resel. The seven segment display will be connected to pine ]
‘ n seg ay o pins PB0 t
and the push button will go to PDO. Figure 2.11 shows the cir(r:)uii diagra:)npgaé):

particular attention to how the out '
: outputs to the seven segment dj
arranged. The flowchart is shown in Figure 2.12. Se lsplay are

but.ton. Start PortB with the code for a 0 on the display. We will be us;
register callpd Counter to keep track of the counts, you should defin utslipg'a
the declarations section as R17. The reason we have assigned it R17 i eth Las
Yyou may remember, registers R16-R31 are the ‘executive assistar'xts’s ore
powerful registers capable of a wider range of operations. We therefo tend 16
ﬁill up registers from R16 upwards, and then use RO-R15 if we run‘oret t?nd t9
Init Section, set up registers R20 to R29 to hold the seven seo}nentu "dn ;‘he
numbers 0 to 9. (HINT: If you do this before setting up‘PortB..: you c;(: 1:10\?;

R20 straight into PortB to initialize i
‘ g 0 1nitialize it. Also reme; .
Init sectior.) - mber to clear Counter in the

ﬁfE‘Rc!ist' %.5 What three lines will test the push button,floop back and test it
gamn 11 1t isn’t pressed? If it is pressed it should ut o
o ot p p ould jump out .of the loop apd add

Then we need to see whether Counter has exceeded 9. We use epi to compare
= »

You can write the Init section yourself, remembering the pull-up on the push -

-§i. and brne to skip if they are not equal. If they are.e ual, Counter must be reset
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to 0. A useful trick with brne and similar instructions: it is often the case that
rather than jumping somewhere exotic when the results aren’t equal. we simply
want to skip the next instruction (as we do with the sbis and sbic instructions).
To do this with branch instructions, write PC+2 instead of a label — this skips 1

instruction (i.e. jumps forward 2 instructions). PC stands for Program Counter
which is described in-more deail on page 54.
» .

o
NS
2
g
KEN

R1-R8

320R °

EXERCISE 2.6 What three lines will test if ‘Counter is equal to 10 and reset it o
if it is? You may want to use the PC+2 tnck. - : '

2 o ?
Now we need t6 display the value in Counter. Do this by setting ZL to point to ;
R20 and adding Counter to it, as described already. C '

Figure 2.11

EXERCISE 2.7 What five lines will display the value in Counter through Port
B, and then loop back to Start" .
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The program so far is shown as Program D. It is recommended that you actu-
ally build this project. Try it out and you will spot the major flaw in the-project.

The basic problem is that we are not waiting for the button to be released.
This means that Counter is being incremented for the entire duration of the
button being pressed. If we imagine that the button is held down for 0.1 s, and
the crystal frequency is 4 MHz, one trip around the program takes about 14
clock cycles, and so Counter is incremented about 4 000 000/(14 x 10) =
28 600 times for every press of the button! Effectively what we have is a pretty
good random number generator (as an aside, random number generators are
quite hard to make without some form of human input — computers are not good
at being random). You could make this into an electronic dice project. but we
will return to our original aim of a reliable counter.

Figure 2.13 shows the new flowchart. The necessary adjustment can be made
at the end to wait for the button to be released before looping back to start.

EXERCISE 2.8  Write the nvo new lines needed to solve the problem. and show
where they are to be added. (HINT: you will need to give this loop a name.)

Try out this new program (Program E). and you may notice a lingering problem.
depending on the quality of your push button. You should sec that the counter
counts up in jumps when the push button in presscd (c.g. jumping up from | 10
4). This is due to0 a problem called bution bounce. The contacts of a push button
actually bounce together when the push button is pressed or relcased. as shown
in Figure 2.14.

In order to avoid counting one press as many. we will have to introduce a
short delay after the button has been released before testing again. This affects
the minimum time between counts, but a compromise must be reached.

Example.2.4 To avoid button bounce we could wait 5 seconds after the button
has been released before we test it again. This would mean that if we pressed
the button 3 seconds after having pressed it before. the signal wouldn’t register.
This would stop any bounce, but means. the minimum time between signals is
excessively large. '

Example 2.5 Alternatively, to attempt to stop button bounce we could wait a .

hundred thousandth of a second after the button release before testing it again.
The button bounce might well last longer than a hundred thousandth of a second
so this delay would be ineffective.

A suitable compromise might be around a tenth of a second but this will vary
from one type of button to the next and you will have to experiment a little. In
order to implement this technique, we will have to learn about timing, which
brings us to the next section. :
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Figure 2.14
Timing

If you cast your mind back to the list of I{O registers (it m?y helpzl’f you c:_vlyance
back at page 14), you will notice a regxst?r called 'I:C:\TO (832). or Timer
Counter 0. This is an on-board timer, and will automatlcall}' count up at a.sp_cc:
ified rate. resetting to 0 when it passes 255. We can use th1§ to perform urnnzg.
functions (e.g. one second delays etc.). In more adva.nc.ed chips there are scvcm!
timers, some of which are 16 bits long. The reason it is also calleq a Counxe_r
is that it can also be made to count the number of signals on a'spec1f ic mp.u.tﬁpm
(PD4 - pin & in the case of the 1200). For the purposes o_fthc 1mmed}ate dls.»u‘s-.
sion, we will be using TCNTO as a timer. and so | will be referring 10 it as
Timer 0. or T/CO for the sake of brevity. o )

Before we can use Timer 0, we will have to configure it propcr.ly (e.g. t.cll it
to time and not count). We do this with the T/C0 anflguranon Register:
TCCRG ($33). In this register, each bit contro}s a certain aspect of the func-
tioning of T/CO. In the case of the 1200, only bits 0-2 are used:

TCCRO - T/C0 Control Register ($33)

bit no. 7 6 5 4 3 2 1 0
i - - = - - (CS02 CSor CS00
bit name l |

I —

(!)05 STOP! T/C0 is stopped

001 T/CO counts at the clock speed (CK)
010 T/CO counts at CK/8

011 T/CO counts at CK/64

| 100 T/CO counts at CK/256

101 T/CO counts at CK/1024

-with any other factors of 2400 that are both less than 245,

110 ‘T/CO counts on falling edge of T0 pin |"

111 T/CO counts on rising edge of T0 pin
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Bits 3-7 have no purpose, but by setting bits 0-2 in a certain way, we can make
T/CO behave in the way we wish. If we don’t wish to use T/CO at all, all three
bits should be 0. If we wish to use it as a timer, we select one of the next five
options. Finally, if we want it to count external signals (on PD4), we can choose
one of the last two options. The options available to us when using T/CO for
timing are to do with the speed at which it counts up. The clock speed (CK) is
going to be very fast indeed (a few MHz) — this is the speed of the crystal which
you connect to the AVR — and so in order to time lengths of the order of seconds

Wwe are going to have to slow things down considerably. The maximum factor by

which we can slow down Timer 0 is 1024. Therefore if I connect a crystal with
frequency 2.4576 MHz to the chip (this is actually a popular value crystal).
Timer 0 will count up at a frequency of 2 457 600/1024 = 2400 Hz. So even if
we slow it down by the maximum amount. Timer 0 is still counting up 2400
times a second. .

Example 2.6 What number should be moved into the TCCRO register in order
to be able to use the T/CO efficiently 10 eventually count the number of scconds
which have passed? :

Bits 3 to 7 are always 0.
Timer 0 is counting internally. at its slowest rate = CK/1024 ‘
Hence the number to be moved into the TCCRO register is 0b00000101.

EXERCISE 2.9 What number should be moved into the TCCRO register when a

button is connected between PD4 and +3 V. and TCNTO is to count when the
button is pressed. '

In order to move a number into TCCRO. we have to load it into temp. and then
use the out instruction. as with the other 1/0 registers. As you are unlikely to
want to-keep changing the Timer 0 settings it is a good idea to do this in the Init
subroutine. to keep it out of the way. v

In order to time seconds and minutes, you need to perform some further
frequency dividing yourself, We do this with what I call a marker and then any
number of counter registers. These are working registers. we use to help us with
the timing. The basic idea is to count the number of times the value in Timer 0
reaches a certain number. For example, in order to wait one second, we need to
wait for Timer 0 to count up 2400 times. This is equivalent to waiting for Timer
0 to reach 80, for a total of 30 times, because 30 x 80 = 2400. We could do this

3

To test if the number in Timer 0 is 80, we use the foll(_)wing lines:

; copies TCNTO to temp
; compares temp with 80
; branches to Equal if temp, = 80

out TCNTO, temp
cpi temp, 80
breq Equal

3

)
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" This tests to see if Timer 0 is 80, and branches to Equal if it is. The problem is

1

ve're not always testing to see if Timer 0 is 80. The first time we are, but then

" 1ext time round we’re testing to see if Timer 0 is 160, and then 240 etc. We

1

|

ﬁ

‘herefore have a register (which I call a marker) which we start qff at 80,‘an_d
‘hen every time Timer 0 reaches the marker, we add another 80 to it. There 1sn’t
wn instruction to add a number to a register, but there is one to sub'tracf a
qumber, and of course subtracting a negative number is the same as adding it.

subi register, number 3

This subtracts the immediate number from a register. Note the regisier must be
me of R16-R31. So far, we have managed to work out when the Timer 0
1dvances by 80. We need this to happen 30 times for one second to pass. We
.ake a register. move 30 into it t0 start with, and then subtract one from it every
ime Timer 0 reaclies 80.

dec register :
This decrements (subtracts one from) a register. When the register reaches 0 we
:now this has all happened 30 times. This all comes together below. showing

‘he set of instructions required for a one second delay.

.3 starts up the counter with 30
; starts up the marker with 80

Idi Count30, 30
1di Mark80, 80

TimeLoop: out TCNTo; temp ; reads Timer 0 into temp

' cp temp, Mark80 ; compares temp with Mark80
brne  TimeLoop ; if not equal keeps looping
subi Mark80,-80 - ; adds.80 to Mark80

dec Count30
brne  TimeLoop

; subtracts one from Count30
; if not zero keeps looping

The first two instructions load up the counter and marker registers with the

sorrect values. Then TCNTO is copied into temp, this is then compared with the ’

marker. If they are not equal, the program keeps looping back to TimeLoop. If
‘hey .are ‘equal it then adds 80 to the marker, subtracts one from the counter.
«ooping back to TimeLoop if it isn’t zero. Note that you will have to define
Viark80 and Count30 in the declarations section, and that they will have to be
»ne of R16-R31. S

Basic operations with AT90S1200 and TINY12 47

Program F: chaser

® Timing.
@ Reading inputs
@ Controlling outputs

The next example project will be a ‘chaser’ which consists of a row of LEDs.
The LEDs are turned on in turn to give a chasing pattern. The speed of this
chase will be controlled by two buttons — one to speed it up, the other to slow
it down. The default speed will be 0.5 second per LED, going down to 0.1
second and up to 1 second. '

The LEDs will be connected to Port B. and the buttons to PD0 and PD1. The
flowchart and circuit diagram are shown in Figures 2.15 and 2.16 respectively.

The set-up box of the flowchart should be fairly straightforward. though
remember that you may want to configure TCCRO in the Init section. and that
as we are timing the order of a second, we will want to use TCNTO as a timer.
slowed down by its maximum. Note also that PD0 and PD1 will require pull-
ups. and that PortB should be initialized with one LED on (say. for example,
PBO). ‘

It is now worth giving a little thought to how we are going to have a time
delay which can vary between 0.1 second and 1 second. The shortest time delay.
0.1 second. can be timed using a marker of 240 (2400240 = 10 Hz). assuming
the Timer 0 is counting at CK/1024 and a 2.4576 MHz crystal is being used.
Then the counter can be varied between | and 10 to vary the overall time
between 0.1 and 1 second. You may want to think about this a little. We' will
therefore have a marker register Mark240, and a variable counter register called
Counter. Counter will be normally reset to 5 (for 0.5 second). but can be reset
to other values given by Speed. Don’t forget to define these registers at the
declarations section at the top of the program).

Looking back at our flowchart. the first box after the set-up looks at the
‘slow-down button”. We shall make the button at PDO the ‘slow-down button’,
and test this using the sbic instruction. If the button is not pressed (i.e. the pin
is high), the next instruction will be executed. and this skips to a section where
we test the “speed-up button’ button (call this UpTest). '

If the button is pressed. we want to add one to Speed (slow down the chase).
This can be done using the following instruction:

inc register H

This increments (adds one to) a register. We don’t want ;h’e delay to grow longer

than 1 second, and so we must check that Speed has not exceeded 10 (i.e. if it
is 11 it has gone too far). We do this with the compare immediate instruction

_already introduced, cpi. If Speed is not equal to 11, we can then branch to

ReleaseDown and wait for the button to be released. If it is equal to 11 we have
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to subtract one from it (using the dec instruction). The first few lines of the o
program are therefore: '

v Start: . shic PinD, 0 ; checks slow-down button ] -

A - rimp  UpTest ; not pressed, jumps . . ot

N —— £ : ' ‘ ' ‘f

A | & inc Speed ; slows down tix{e i
{)l[ — = cpi Speed, 11 ; has Speed reached 11?

brne  ReleaseDowr  ; jumps to ReleaseDown if not equal

dec Speed . ; subtracts one from Speed
ReleaseDown: : -
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sbis PinD, 0 ; waits for button to be released
rjmp  ReleaseDown:

In UpTest, we do the same with the ‘speed-up button’, PD1, and instead of
jumping to UpTest, we jump to the next section which we will call Timer. If
the speed-up button is pressed we need to decrement Speed, and instead of
testing to see if it has reached 11, we test to see if it has reached 0 (and incre-
ment it if it has). We could use cpi Speed, 0, but this line is unnecessary as
the zero flag will be triggered by the result of the dec instruction, and so if we
decrement Speed and the result is zero, we can use the brne in the same way as
before.

EXERCISE 2.10 Write the seven lines which follow those given above.

The next section. called Timer, has to check to see if the set time has passed.
and return 1o the beginning if the time hasn't passed. This means the timing
routine must loop back to Start rather than stay in its own loop.

We will also put in the lines which set up the marker and counter registers in
the Init section. Mark240 should initially be loaded with 240: Speed and
Counter should be loaded with 5. This means we can go straight into the
counting loop.

Timer: in temp, TCNTO0  ; reads Timer 0 into temp
cp temp, Mark240 ; compares temp with Mark240
brne  Start ; if not equal loops back to Start

subi Mark240, -240 ; adds 240 to Mark240

dec Counter ; subtracts one from Counter
brne  Start ; if not zero loops back to Start

‘This should be familiar from the last section on timing. Note that instead of
looping back to Timer, it loops back to Start. You may find, however, that you
can reduce button bounce by looping back to Timer rather than Start in the
0.1 second loop. This means the buttons will only be tested once every 0.1
second, which means that a button will have to be pressed for at least 0.1
second. After the total time has passed, we need to chase the LEDs (i.e. rotate
the patterri), and also reset the Counter register with the value in Speed. To do
this we use: ' .
mov  regl,reg2 .3

This moves (copies) the number from reg2 into regl.

EXERCISE 2.11 _What one line resets Counter with the value in Speed?

T,

e i e e e e e So et
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To rotate the pattern of LEDs we have a number of rotating instructions at our
disposal:

asr register ; arithmetic shift right
Isr register ; logical shift right

Isl register 3 logical shift left

ror register ; rotate right

rol register ; rotate left

The grithmeric shift right involves shifting all the bits to the right, whilst
keeping bit 7 the same and pushing bit 0 into the carry flag. The carry flag is a
ﬂag in SREG like the zero flag. The logical shift right shifts all the bits 0 the
right. and moves 0 into bit 7. The rorare right rotates through the carry flag (i.c.

pit 7 is loaded with the carry flag. and bit 0 is loaded inio the carrv flag). This
1s summarized in Figure 2.17. T '

CTeGLEERNT

dsr

o> 7]6[5413]2]1

716ls[a[3]2]1 o} ¢

Isr AR Isl

7]6l5[4]3]2]1T0o 716[5]4]3]2]1]0]

Figure 2.17

As we rotate the pattern along, we don’t want any ls appearing at the ends,
because this would turn on edge LEDs out of turn, which-would then propagaté
down the row and ruin the pattern. It would therefore Seem that Isl or lsr is
appropriate. For the sake of argument, we will pick Isl, to rotate the pattern to
the left. We cannot apply these rotating instructions’ directly to PortB, so we
have to read in the pattern to temp, rotate temp, and then output back to PortB.
Before we output it to PortB, we have to see whether or not we've gone too far

Lo

R R

RSN

SRR

SRR

PRI
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(rotated eight times), in which case we need to reset PortB back to its init.ial
value (all off except PB0). We can do this by monitoring the carry ﬂag, which
will be high if we rotate a high bit off the end (a quick glance at Figure 2.17
should confirm this). The instruction for this is:

bree label :

This branches to label if the carry flag is clear. Therefore the lines we need are:

in temp, PortB ; reads in current state
Isl temp ; rotates to the left
brcc  PC+2 ; checks Carry. skip if clear

Idi temp, 0b00000001 ; resets to PBO on, others off -

; outputs to PortB
; loops back to Start

out
rjmp

PortB, temp
Start

You will notice that if the carry flag is ciear. we skip the next instruction usiqg
the PC+2 trick. The program is shown in its entirety as Program F in Appendix
* You can go through and assemble this. and simulate it. For lh-c‘ si;pulmion.
you will notice that stepping through the entire program waiting for Timer () to
count up will take a long time. For this reason. ways to run throggh parts pf tl}e
program at high speed are on offer. For example. 'if you right clnpk on a line in
the program (when in simulation mode). you are given the option to Run to
Cursor’ (Ctrl + F10). This will run to where you have clicked at high speed (not
quite real time, but close). '

So far we have covered quite a few instructions; it is important to keep track
of all of them, so you have them at your fingertips. Even if you can’t remember
the exact instruction name (you can look these up in Appendix C), you should
be familiar with what instructions are available.

REVISION EXERCISE  What do the following do: sbi, cbi, sbic, sbis, rjmp. Idi. st.
Id, clr, ser. in, out, cp. cpi, brbs, brbc, breq. brne. brcc, subi, dec, inc, moy,
asr, Isr, Isl, ror and rol? (Answers in Appendix D.)

Timing without a timer?

Sometimes we will want to use the TCNTO for other purposes (such as counting

- signals on T0/PD4), and so we will now look at timing without the use of this
timer. Each instruction takes a specific amount of time, so through the use of care-
fully constructed loops we can insert delays which are just as accurate as wn{h
Timer 0. The only drawback of this is that the loop cannot be interrupted (say, if
a button is pressed), unlike the Timer 0, which will keep copntin_g regardless.

.

. ’Wﬂ,-n»‘ﬂa.’m.. [OPERRION
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The overall idea is to find the number of clock cycles we need to waste and
count down from this value to 0. The problem lies when the number is greater
than 255 (which is the case almost
somehow split the number over a number of registers, and then cascade them.
We decrement the lowest byte until it goes from 00 to FF (setting the carry flag
as it does so), and then decrement the next highest byte etc.

Example 2.7 Higher byte  Lower byte Carry flag?
Ox1A 0x04 no
0x1A 0x03 no
Ox1A 0x02 RO
0x1A 0x01 no
0x1A 0x00 no
Ox1A OxFF YES (so decrements upper byte
0x19 < OxFF no Pper 2yte)
0x19 OxFE etc.

The first step is to work out how many
requires. For example. to wait one second
‘kill" 4 million clock cycles. The loop we
cycles, where x is given in Table 2.].

instruction cycles the time delay
with a 4 MHz crystal. we need to
will write will take *x" instruction

Table 2.1

x Length of time with 4 MHz clock  With 2.4576 MHz clock
3 0-63 ps 0-102 ps

4 64 ps—16 ms 102 ps-26 ms

5 16 ms—4.] seconds 26 ms—6.7 seconds

6 4.2 seconds-17 minutes 6.7 seconds—27 minutes
7 17 minutes-74 hours

27 minutes-120 hours

We are timing one second, which means x = 5. We therefore divide 4 000 000 -
by 5, getting in this case 800 000. We convert this number to hexadecimal.
getting 0xC3500. Write this number with an even number of digits (i.e. add a
leading 0 if there are an odd number of digits), and then split it up into groups
of two digits. For example, our values are 0x00, 0x35 and 0x0C:

At the start of the delay in the program we put these numbers into file regis- '
ters, note the order. ; 7 '

Idi Delay1, 0x00
“Idi Delay2, 0x35
Idi Delay3, 0x0C

wo we wo

all the time). In this case we need to

SN
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The delay itself consists of just one line per delay register plus one at the end
(i.e. in our case four lines). To help us achieve such a short loop we need to use
a new instruction:

sbei reg, number 3

Subtract the immediate number from a register, and also subtract 1 if the carry
flag is set. For exampie:

sbci Delay2, 0 : H

This effectively subtracts 1 from Delay 2 if the carry flag is set. and subtracts 0
otherwise. Our delay loop is as follows:

Loop: subi Delayl,1 ; subtracts 1 from Delayl
sbei Delay2, 0 ; subtracts 1 from Delay2 if Carry is set
sbei Delay3, 0 ; subtracts 1 from Delay3 if Carry is set
brcc  Loop ; loops back if Carry is clear.

When it finally skips out of the loop, one second will have passed. The first
thing to note is that the length of the loop is five clock cycles (the branching
instruction takes rwo clock cycles). You can now see where the numbers in Table
2.1 come from — for every extra delay register you add there is an extra cycle in

the loop. The reason we have used subi to subtract 1 instead of dec is that unlike -

subi, dec doesn’t affect the carry flag. We clearly rely on the carry flag in order
to know when to subtract from the Higher bytes, and when to skip out of the
loop.

¥

The program counter and subroutines

There is an inbuilt counter, called the program counter, which tells the AVR
what instruction to execute next. For normal instructions, the program counter
(or PC for short) is simply incremented to point to the next instruction in the
program, For an rjmp or brne type instruction, the number in the PC is changed
so that the AVR will skip to somewhere else in the program.

Example 2.8
Start:
039 sbi PortB, 0. ; turns on LED
- 03A sbic PinD, 0 ; tests push button
03B “cbi PortB, 0 s turns.off LED

S
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Loop: .

03C’ dec Counter ; ,
03D breq PC+2 ; skips next line if 0
03E rjmp  Start R

03F rimp Loop K

The above example segment has the program memory addresses for each
instruction on the lefi-hand side in hexadecimal. Note that blank lines aren’t
given addresses, nor are labels, for they are actually labelling the address that
follows. Looking at the behaviour of the PC in the above, it starts at 039 and
upon completion of the sbi instruction gets incremented to 03A. Then PinD, 0

is tested. If it is high, the PC is simply incremented to 03B. but if it is low, the

program skips. i.e. the PC is incremented twice to 03C. The rjmp Start
instruction moves 039 into the PC, making the program skip back to Start. This
also sheds some light on'the PC+2 trick we've used a few times already, if the
result is ‘not equal’ (i.e. zero flag clear), the program adds 2 to the PC rather
than 1, thus skipping one instruction.

EXERCISE 2.12  In the example above. what is the effect of the instruction
rjmp Loop on the PC? : -

This now brings us to the topic of subroutines. A subroutine is a set of
instructions within the program which you can access from anywhere in the
program. When the subroutine is finished, the program returns and carries on
where it left off. The key feature here is the fact that the chip has to
remember where it was when it called the subroutine so that it can know
where to carry on from when it returns from the subroutine. This memory is
kept in what is known as a szack. You can think of the stack as a stack of
papers, so when the subroutine is called. the number in the program counter
is placed on top of the stack. When a returning instruction is reached. the top
number on the stack is placed back in the program counter, thus the AVR
returns 1o execute the instruction after the one that called the subroutine. The
1200 has a three level stack. When a subroutine is called within a subroutine.
the number in the PC is placed on top of the stack, pushing the previous
number to the level below. The subsequent returning instruction will, as
always, select the number on the top of the stack and put it into the PC. A
three level stack means you can call a subroutine within a subroutine within
a subroutine, but not a subroutine within a subroutine within a subroutine
within a subroutine. This is because once you’ve pushed three values on to
the stack, and you call another subroutine, hence push({xg another value on to
the stack, the bottom of the stack is lost permanently. The example in Figure
2.18 illustrates this problem. )
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BEFORE AFTER
035 Sub1: rcall Sub2 PC: 035 ' 03/
Stack: 03C \h-035
7?7? 03C
7 272
036 ret PC: 030 777
Stack: ?2? )1/' ?2?
222 22?
2? 277
A ———————— ————— ‘
037  Sub2: reall  Sub3  [PCT 037 - 1 (222 ]
Sook 0B AT ,
03C 035
7?7 03C
038 ret [FT: 038 /*.J/V 036
‘fStack: 035 22?
7? 7?7?
227 2
239 Sub3: rcall Sub4 [P 035 03B
[Smoc 037~ T35
035 037
03C 035
J3A ret [FT: _—5‘37\—‘/_‘;1", vicy: R
Stack: 037 035
035 2?7
?27? 2?22
)38 Sub4: et PC 038 HOK7 N
Stack: 039 ))037
037 035
035 ?27?
:3C  Start: reall Sub1 P o3C . T3S}
Sk 77— T3¢
2 72
227 72

“igure 2.18
The instruction to call a subroutine is:
rcall . label H

Vhich is a relative call, and so the subrotitine needs to be within 2048 instruc-
. -ons of the rcall instruction. To return from a subroutine use:
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ret 3

Of course, you can call as many subroutines as you like within the same subrou-
tine like so:

Subl: rcall  Sub2 H

rcail  Sub3 ;

rcall  Sub4 3

ret ;
Start: rcall  Subl : ‘

Note that the programs so far have been upwardly compatible (this means they
would work on more advanced types of AVR). This ceases to be strictly true
with subroutines, and if you are developing these programs on a chip other than
the 1200 or Tiny AVRs you will have to add the following four lines to the Init
section — Chapter 3 explains why:

ldi temp, LOW(RAMEND) ; stack pointer points to
out SPL., temp 5 last RAM address
Idi temp, HIGH(RAMEND) ;

out SPH, temp H

The simulator button {* is used to siep over a subroutine — i.e. it runs through
the subroutine at high speed and then moves on to the next line. The step out
button, {}, is used when the simulator pointer is in a subroutine and will make
the simulator run until the return instruction is reached.

Program G: counter v. 3.0

® Debouncing inputs
® Seven segment display

Now that we know how to implement a timer, we can look back to improving
the counter project to include debouncing features to counteract the effect of
button bounce. The new flowchart is shown in Figure 2.19.

We can see from the flowchart that we need to insert two identical delays
before and after the ReleaseWait section in the prograny Rather than dupli-
cating two delays, we can have a delay subroutine that we call twice. For
example, if we call our delay subroutine Debounce, the following would be the
last few lines of the new program: '
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.. The circuit diagram is shown in Figure 2.20, and the flowchart in Figure 2.21,
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rcall  Debounce ; inserts required delay
ReleaseWait: sbis PinD, 0 ; button released?

rimp ReleaseWait ; no, so keeps looping

rcall  Debounce ; inserts required delay

rjmp Start ; yes, so loops back to start

Finally we can write the Debounce subroutine. [ like to keep my subroutines in
the top half of the page to keep things tidy, after the rjmp Init line, but
before the Init section itself. In this case we will use the delay without Timer 0.

EXERCISE 2.13  How many clock cycles will it take to create a 0.1 second delay.
given a 4 MHz crystal? Convert this number into hexadecimal, and split it up
over a number of bytes. What should the initial values of the delay registers be?

EXERCISE 2.14  Challenge! Write the eight lines that make up the Debounce
subroutine. :

You must also remember to define the three new registers vou have added. With
R20-R29 taken up by the seven segment code registers, and R30.31 belonging
to ZL and ZH. you may think you've run out of useful room. and may have to
use the less versatile RO-R15. However, notice that while in the Débounce
subroutine, you are not using the temp register. You could therefore use temp
instead of Delay1. Either define Delay1 as R16 (there is nothing strictly wrong
with giving a register two different names), or as this_is potentially confusing
you may prefer to scrap the name Delayl and use temp instead in the
Debounce subroutine. Try this program out and see if .you’ve eliminated the
effect of the button bounce. Can you make the time delay 'smaller? What is the
minimum time delay needed for reliable performance? '

Program H: traffic lights

© Timing without Timer 0
o Toggling outputs

Our next project will be a traffic lights controller. There will be a set of traffic
lights for motorists (green, amber and red), and a set of lights for pedestrians (red
and green) with a yellow WAIT light as well. There will also be a button for pedes-
trians to press when they wish to cross the road. There will be two timing opera-
tions needed for the traffic lights. We will be monitoring the time between button
presses as there will be a minimum time allowed between gach time the traffic can
be stopped (as is the case with real pedestrian crossings). As well as this, we will
need to measure the length of time the lights stay on, and blinking. We will use the
Timer 0 to control the minimum time between button presses (which we’ll set to
25 seconds), and use the ‘Timerless’ method just introduced for all other timing.

3
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You can write the Init section yourself, noting that PDO requires an internal
pull-up. Set up TCNTQ to count at CK/1024. :

The first two lines get the LEDs in the correct state with the red pedestrxan
light on, as well as the motorists’ green.

EXERCISE 2.15  What fwo lines will do this?

We need to perform some sort of timing during this initial loop so that while
it is waiting for the button, it can also be timing out the necessary 25 seconds,
This will be taken care of by a subroutine called Timer which we will write
later. So after these two first lines insert:

rcall  Timer ; keeps timing

In this subroutine we will use the T bit in SREG, a temporary bit you can use
for vour own purposes. We will use it to signal to the rest of the program
whether or not the required 25 seconds have passed. It will initially be off. but
afier the trafTic is stopped, and the people cross etc., it 1s set. When it is set and
Timer is called it will count down. but rather that staying in a loop until the
time has passed it returns (using ret) if the required time hasn’t passed. When
the required ume does pass, the T bit is cleared again. and the rest of the
program knows it’'s OK to stop the traffic again. Afier this instruction we test
the button.

EXERCISE 2.16 What rwo lines will then test the push button and loop back to
Start if it isn’t pressed?

"EXERCISE 2.17 If the button is pressed the pedestrian’s WAIT light should be
turned on, what one line does this?

To test the T bit, you can use one of th.e following instructions:
brts label ; branches if the T bit is set
brtc label ; branches if the T bit is clear

EXERCISE 2.18 What two lines form a new loop which calls Timer, and tests
the T bit in SREG, staying in the loop until the T bit is clear.

After the required time has passed, we can start slowing the traffic down, Turn
the green motorists’ light off, and the amber one on. Keep all other lights
unchanged.

EXERCISE 2.19 What two lines achieve this?

As the flowchart shows, there are quite a few time delays required, and rather
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than copy the same thing over and over, it makes sense to use a time delay
subroutine. If we look at the minimum delay we will be timing (which is 0.5
second for the flashing), we can write a delay for this length and then just call -
it several times to create longer delays. The delay will be called HalfSecond,
and so to wait 4 seconds we call this subroutine 8 times. We could simply write
rcall HalfSecond eight times, but a shorter way would be the following:

idi temp, 8 3
FourSeconds:

reall HalfSecond H

dec temp S .

brne  FourSeconds H

temp is loaded with 8, and then each time it is decremented, HalfSecond is
called. After doing this eight times it skips out of the loop.

After this 4 sccond delay the red motorists’ light must be turned on, and the
amber one off. The red pedestrian light must be turned off, and the green one
on. The pedestrian’s WAIT light must also be turned off.

EXERCISE 2.20  Which nwo lines will make the required output changes?
EXERCISE 2.21  Which four lines make up an 8 second delay?

After the 8 seconds, the red motorists’ light turns off, and the motorists’ amber
and pedestrians’ green lights must flash. Start by turning the flashing lights on,
and then we will look at how to make them flash.

EXERCISE 2.22 Which nwo lines make the required output changes?

To toggle the required two lights, we need to invert the states of the bits. There

are two ways to invert bits. We could take the one s complement of a register,

using: ,
com  register 3

This inverts the states of all of the bits in a register (0 becomes 1, 1 becomes 0).

EXERCISE 2.23 If the numbcr in temp is 0b10110011, what is its resulting
value afier com temp?

However, we want to selectively invert the bits. This is:done using the exclusive
OR logic command. A logic command looks at one or more bits (as its inputs)
and depending on their states produces an output bit (the result of the logic
operation). The table showing the effect of the more common inclusive OR
command on 2 bits (known as a truth table) is shown below:

€
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inputs | result v
07070
0 |11]1
11041
141 1

The output bit (result) is high if either the first or the second input bt is high
(or if both are high). The exclusive OR is different in that if both inputs are high.
the output is low:

inputs| result
0010
0j111
1 (011
1 11+0

One of the useful effects is that if the second bit is 1. the first bit is toggled. and
if the second bit is 0. the first bit isn't toggled (see for vourself in the table). In
this way certain bits can be selectively toagled If we just wanted to toggle bit 0
of a file register, we would exclusive OR the file register with the number
00000001.

The exclusive OR instruction is:

eor regl, reg2 3

. This exclusive ORs the number in reg2 with the number in regl, leaving the
result in regl.
EXERCISE 2.24 What four lines will read state of the lights into temp, selec-
tively toggle bits 1 and 3, and then output temp back to PortB. (Hint: You will
need a new register, call it tog.)

EXERCISE 2.25 Challenge! Incorporate the previous answer into a loop that
waits half a second, selectively toggles the correct lights, and repeats eight
times. You will need a new register to count the number of times round the loop:
call this Counter, and call the loop FlashLoop. This should take eight lines.

The traffic lights can now return to their original states, but before looping back
to Start, remember to set the T bit. You can do this directly using the following
instruction:

set » ; sets the T bit
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EXERCISE 2.26  Write the final two lines of the program.

What remains for us now are the two subroutines, HalfSecond and Timer. We
will tackle HalfSecond first as it should be the more straightforward.

EXERCISE 2.27 Without using the Timer 0, create a half second delay, and use
this to write the eight lines of the HalfSecond subroutine. A 2.4576 MHz
crystal is being used.

For Timer, we first test the T bit. If it is clear we can simply return.
4
EXERCISE 2.28  Write the first nvo lines of the Timer subroutine,

We can then use the same method we used before in timing loops; however,
instead of looping to the top of the section. return from the subroutine. The
required time is 25 seconds. which on a 2.4576 MHz crystal with Timer 0
running at CK/1024 corresponds to a marker of 240 and a counter of 250 (work
it out!). '

EXERCISE 2.29  Challenge! Write the remaining fen lines of the Timer subrou-
tine. Assume your counter and marker registers have been set up in the Init
section (do this!). and reset the counter register with its initial value at the end
of the subroutine. Don't forget to clear the T bit at the end of the subroutine (use
the clt instruction).

Congratulations! You have essentially written this whole program yourself. To
check the entire program, look at Program H (Appendix J).

Logic gates

We had a short look at the inclusive OR and exclusive OR logic gates, and now

we’ll look at other types: AND, NAND, NOR ENOR, BUFFER, NOT. The
truth tables are as follows: a-w-“g

This is useful for masking (ignoring certain bits). If the second bit is 0, the first
bit is masked (made 0). If the second bit is 1, the first bit remains intact.

inputs| result
61010
01110
11010
111141

s o
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Therefore ANDing a register with 0b00001111 masks bits 4-7 of the register.

. and leaves bits 0—3 the same.

There aren’t specific instructions for all these gates, but they can be 1mple-
mented using a combination of available instructions.

NAND

Program l: logic gate simulator

!
inputs| result o Logic functions |
0]011 e TinyAVR

\ 011]1 |
11011 Our next project will be a logic gate simulator which can be programmed to i
1110 act as any of the eight gates given above. It will therefore require two inputs E
.. . ND and one output. and three inputs will togetherselect which gate it is to emulate. 2

This is the opposite of an Al o This makes a total of six ' I/O pins. which just fits on the Tiny AVR chips. We :
NOR will be writing this program for the Tinyl2 AVR in particular, but it can be
- adapted to most of the other types, including the 1200 that we have so far been g
inputs| result writing for. Figure 2.22 shows the pin layouts of some of the members of the i
0]10f1 Tiny family. :
011160
i (1) ?) AT tiny 10111 AT tiny 12 ‘E
.. . U/ /U ) :
This is the opposite of an OR mesmessT] 1 s Dvee el . Pvee | 2
ENOR wtatnees[] 2 7 [JrB2(10) utaLn pe3[] 2 7 [JPB2ISCK/TO) ,
inputs| result (xTAL21 PB4 ] 3 6 []PBIUNTO/AINY  (xTAL2) PB4[] 3 6 PBY '
. {(MISO/INTO/AINT)
0101 GNo[] 4 5 [JPBO(AINO) Gno[ 4 5 [
01110 PBO (MOSI/AINO)
1(010
1111

Figure 2.22
This is the opposite of an EOR

_ Basic features about this family include having a 6-bit Port B (PB0-PB5), but

NOT - these six /O pins are available only under certain circumstances. For example,
input | result you can see that ‘PBS, and }_>B4 are also the oscilla}or inputs._. and so to use the_se
0 1 as 1/0 pins requires selection of the internal oscillator. Using a separate oscil-
1 0

lator (and therefore only needing XTAL] as a clock input) means PB4 is avail-
able, but PB3 isn't. Using the RESET pin as a reset pin means losing PB5. So
you can see that having six 1/O is very much a maximum. Also, take note that

Only one input, output is opposite of input

on the Tiny10 and Tiny11 PBS5 is an input only. On the Tiny12, PBS is an input 1
3uffer ’ or an output drain (this means you can make it an outputsbut only a low output
— i.e. it can sink but not source current). This means that although PinB and
input | result DDRB are 6 bits long, PortB is only 5 bits long. PB5 therefore has no internal 3
0 0 . pull-up, and so needs an external resistor. An advantage of the Tiny AVRs over
1 1 : ‘

the 1200 mode! we have been using so far is the availability of the following
; instruction:
Only one input, output copies input . ‘ [g
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Ipm ; m

This loads the contents of the program memory pointed to by Z into register
RO. This means we can use the program memory itself as a look-up table, as
opposed to using up working registers. It is also more efficient on code, as each
instruction in the program memory is /6 bits long, so we can store 2 bytes in
place of an instruction. We will be needing this instruction in the example
project.

pe ‘-sv
R2
100k
{ 1 { pas/RESET PE2TO —%——f:@
£—| PBWXTAL1  PBUINTOAINY |—
2| PBAXTAL2 PB/AINO
- l ATTINY1Z VE] R1
|° 220R
°
1
e LED OV
Figure 2.23

The circuit diagram for the logic gate project is shown in Figure 2.23. Note
that the NOT and Buffer gates take only one input, and so we will be using PB1
as the input for these gates. Therefore, the effective two-inpur truth tables for
the NOT and Buffer gates are:

NOT
inputs| result
0J0 11
01111
1010
1110
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Buffer
inputs| result
01010
01110
1 (011
111 |1

EXERCISE 2.30 Have a go yourself at constructing the flowchart, before
looking at my version in the answer section. You need not make it more than
three boxes in size, as we aren’t vet concerned with sorting out how to manage
the imitating of the individual gate types.

When writing the Init section the output. PB2, should initially be off. To choose
which logic gate the AVR is to imitate, we have a binary switch which sets its
outputs between (000) and (111) depending on the state of the switch. We there-
fore have to use this in the program to determine which section to jump to.
Although the output from the switch is between 000 and 111. the resulting
number in PinB is between xx000x and xx111x. where the states of bits 0. 4
and 3 must be ignored. We therefore take the number in PinB and fmask bits 0.
4 and 5 using: '

andi reg. number :
This ANDs the number in a register with the immediate number (oniy for regis-
ters R16—-R31). To mask bits 0. 4 and 5, but keep bits 1-3 intact, we AND the
register with 0b001110. We then rotate it once to the right, making sure that
only zeros appear in bit 5 during the rotation.

EXERCISE 2.31 What is the appropriate rotation instruction to use?

The result is a number between 0 and 7 which we shall use to access a location

“in the program memory, and so we should load PinB into the ZL register as this

will be used to point to a specific address,

EXERCISE 2.32 Wnite the three lines which read PinB into ZL, mask bits 0, 4
and 3, and then rotate it to the right as required.

Our look-up table will begin after the rjmp Init instruction. This instruc-
tion is at address 000 of the program memory (whi_ch’ is why it is the first one
executed). Instructions are 16 bits long, and so take up 2 bytes (or one word).
Program memory addresses are therefore word addresses, and the byte address
is 2 times the word address. Figure 2.24 illustrates this.
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worid 00
I I
0010 OOIIIOOOI 00001_
l
] |
byte 00 :  byte 01

=and rlé6,r17

Figure 2.24

i Our look-up table will therefore start at word address 001 which is equivalent
o byte address 002. ZL points to the byte address. so we will have to add 2 to0
ZL to start it pointing to the bottom of the look-up- table.

ZXERCISE 2.33  Which mwo lines will add 2 to ZL and then use ZL to read a
i -alue from the program memory into R0?

Now the real question is what to have in the Jook-up table that is going to tell
he program how to act like a particular logic gate. After some thought. I have
‘ound that using a split form of the truth table for each gate gives us the most
straightforward solution. What we are about to do now may appear far from
sbvious, but hopefully after some thought you will see that ultimately it works
-ather neatly.
We are going to have a byte for each logic gate. For each gate, we take the
ruth table and look at the set of output states (e.g. 0001 for an AND gate, and
“)111 for an inclusive OR). We then split these nibbles into two sets of 2 bits,
ind make these bits 4 and 5 and 0 and 1 of a byte. For example, AND: 0001
-plits into 00 and 01, and then becomes 00000001. Inclusive OR: 0111 splits
nto 01 and 11, and the becomes 00010Q11.

"XERCISE 2.34 What are the relevant bytes for the NAND, NOR, ENOR, EOR.
NOT and Buffer gates?

Ne then list these in the look-up table in any order we choose (noting that their
.osition in the table defines how the code in PB1, 2 and 3 refers to a particular
zate). The assembler has directives (instructions for the assembler) which tell it
o place the following word or byte into the program memory. These directives
‘re .dw (define word) and .db (define byte). If using .dw, you will have to
-roup the bytes derived above into pairs (arbitrarily if you wish), e.g.:

dw 0b0000000100010011  ; code for AND and IOR
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.db 0b00000001, 0b00010011 ; code for AND, code for IOR

There is one important difference between the two lines above. When using .dw,

the lower byte of the word has the lower byte address. For example, if the two
lines above were both written at word address 00, the code for the IOR would
be at byte address 00 in the .dw example, and at byte address 01 in the .db
example. As long as you take note of the correct byte addresses, it doesn’t
matter which way you do it.

EXERCISE 2.35 Complete the other three lines of the look-up table using .dw
or .db. ‘

Therefore, using the Ipm instruction we have obtained a form of the truth table
for each gate at RO. We will then test Input A of the gate (PB4). If it is low we
swap the nibbles of R0 (e.g. 00000001 becomes 00010000). What this does is
select which half of the truth table we wish to access (remember we split it up
into two halves). The swap instruction is:
swap  reg H

and swaps upper and lower nibbles of a register. We then test Input B of the gate
(PB3). If it is low we rotate the number in RO to the right. What this does is
select which of the two outputs remaining in the truth table is the right one. The
four lines we need are therefore:

sbis PinB, 4 ; tests Input A

swap RO s swaps nibbles if low
sbis PinB, 5 ; tests Input B
ror RO ; rotates right if low

The state of R0, bit 0 now holds the output we wish to produce in PBO.
However, we don’t want to change the states of the pull-ups on the inputs, so we
want to move a number into PortB that is all 1s for PB1—4, and PBO equal to bit
0 of RO. Just like ANDing is a way to force certain bits low (masking), inclu-
sive ORing is a way to force certain bits high. For example, in this case if we
IOR RO with Ob11110 we will get a number that is all 1s except PB0 whose
state is intact. We can then move the result of this into PortB safe in the knowl-
edge that the pull-ups will remain. The inclusive OR instruction is:

Ve

ori reg, number ;. )

This inclusive ORs a register with the immediate number, but only works on
registers R16-R31. We therefore have to move RO into temp using the mov
instruction. il e : '

e

b
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“XERCISE 2.36 What four lines take the number in R0, move it to temp, force
»its 1-4 high and then output it to PortB before looping back to Start.

This finishes off the program, it is shown in its complete form in Appendix J.

SREG - the status register

We have seen some of the bits of SREG (zero flag, carry ﬂa'g and T bit), and we
will now look at the remaining five. They can all be indxw@ually tested, set or
“leared using general SREG instructions: brbc and brbs which we have already
net, and:

bset bit
belr bit

; sets a bit in SREG
; clears a bit in SREG

Zach bit also has its own personalized instructions (such as breq and brec)
which are listed in Appendix C. The bits in SREG are:
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SREG — STATUS Register ($3F)

bit no. 7 6 5 4 3
bit name I T H S \'% N Z C

Carry flag:
Reacts to carrying
with arithmetic
operations, and to
- the ror and ro!l
instructions.

Zero flag:
0: The result wasn't 0
1: The result was 0

Negative flag:
0: MSB of result is 0
1: MSB of resultis 1 .

Two’s complement overflow flag:

0: No two's complement overflow

1: Two’s complement overflow
occurred

Sign flag: (XOR of V and N bits)
0: Result is positive
1: Result is negative

Half carry flag:

Like the carry flag, except for the lower nibble
(i.e. 4 Isbs)

- T bit:
A temporary bit

Global interrupt enable:
Master switch for the interrupts .
(cleared when an interrupt occurs) .4

If you want to check whether a particular instruction’affects a certain flag,
check out the Instruction Overview (Appendix D). The purposes of the nega-
tive, two’s complement overflow, and sign flags should be clear if you cast your
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mind back to the section on negative binary numbers. The half carry flag
behaves in exactly the same way as the carry flag, except for the lower nibble.
For example:

1111
01011010 = 90

+ 00001111 =15
01101001 = 105

This operation would set the half carry flag, as there was 2 carry on the bit 3
pair. The global interrupt enable will be introduced in the section on interrupts
in Chapter 4.

Watchdog timer

A potentially useful feature of AVR chips is the waichdog timer: a 1 MHz
internal timer, independent of outside components, which resets thf: AVR at
regular intervals. In order to stop the AVR resetting, the watchdog timer must
be cleared at regular intervals (i.e. before it has time to reset the chip). 'It is
chiefly used as a safety feature, for if the program crashes the watchdgg tumer
will shortly kick in and reset the chip, hopefully restoring normal operation. The
watchdog timer is cleared using:

wdr H

This resets the watchdog timer (often called *patting the dog’). The watchdog
simer (WDT for short) is controlled by the WDTCR register:
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WDTCR ~ Watchdog Timer Control Register ($21)

bit no. 7 6 5 4 3 2 1 0
bit name - - - - WDE WDP2 WDP1 WDPO
= |
000 | 15 ms
001 | 30 ms
010 | 60 ms

011 {0.12 second
100 | 0.24 second
101 | 0.49 second
110 | 0.97 second
111 | 1.9 seconds

‘Watchdog enable:
0: Watchdog Timer disabled .
1: Watchdog Timer enabled

WDE controls whether or not the WDT is cnabled. and ‘WDPO0-2 controls the
length of time before the chip is reset. Note that the times given in the table are
susceptible to temperature effects and arc also a function of the supply voliage.

The values in the table are for a supply of 5.0 V. Fora 3.0 V supply the times
are approximately three times longer.

Sleep

There are often applications where you wish the chip to be idle for a while until
something happens. In such cases it is handy to be able to send the AVR to a
low power mode called sleep. The AVR can be woken up from sleep by an
external reset, a WDT reset, or by an interrupt (these are discussed in Chapter
4). The instruction to send the AVR to sleep is simply:

sleep H
There are two types of sleep: a light snooze and a deep sleep: The light snooze
(called idle mode) halts the program but keeps the timers (such as Timer 0)
running. The deep sleep (called power-down mode) shuts down everything such
that only the WDT, Reset pin, and INTO interrupt can wike it up.

For example, to design a device that turns on when moved, we could do the
following. Test the vibration switch and go to (deep) sleep if it is off. The WDT
will then wake up the AVR and reset it. Testing the vibration switch will take a

 few microseconds, and the WDT could be set to time out every 60 ms, meaning
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the AVR is only on for about a thousandth of the time. Whep the v.ibration
switch does eventually trigger the AVR will skip the sleep instruction and
continue with normal operation. The WDT could then be disabled or reset at
regular intervals using wdr. . .

“To contro} the sleep properties of the AVR, we use an /O register calle
- MCUCR (835). Bit 5 of the MCUCR is the sleep enable,.and this bit must be
set if you wish to use the sleep instruction. Bit 4 selects which type of sleep you
require (0 for idle mode and 1 for power-down mode).

More instructions - loose ends
Through the example projects we have encountered the majority of the instrug-
tions for the 1200 and Tiny AVRs. Here is the remainder:

neg reg )

This instruction makes the number in a register negative (i.c. takes the rwo
complement).

nop H

This stands for no operation. in other words do nothing. This essentially wastes
one clock cycle, and can be quite useful. There are further instructions which
perform logic and arithmetic operations on pairs of registers: "

. and regl,reg2 ; ANDsregl and reg2, lea}'ing resulF in regl
. or ~ regl,reg2 ; ORsregl and reg2, leaving result in regl

add  regl, reg2
ade  regl, reg2
sub. regl, reg2
sbc  regl, reg2

; adds regl and reg2, leaving result in regl ‘
; as add, but adds an extra | if the Carry flag is set
; subtracts reg? from regl, leaving result in reg]

; as sub, but subtracts a further 1 if the Carry flag
; 1s set

There are also instructions to load a specific bit in a register into the T bit of

SREG:

.3 stores a bit in a register into the T bit
; loads a bit in a register into the T bit

- bst reg, .bit
bld  reg, bit

Lrlasrir. e

There are two more comparing instructions: -
cpse regl,reg2 ;. ...

™AL DL L . S t: o ’ T

~
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the same way that the cp instruction effectively performs a sub between two

registers without actually changing them, the instruction cpe effectively’

performs an sbhe between two registers without actually changing them. The

SREG flags (e.g. carry and zero flag etc.) are affected in exactly the same was
as with the sub and sbe instructions:

cpc  regl,regd  ; compares two registers taking the Carry flag into
; account

Finally there are two instructions for testing the state of a bit in a working
register:

srbc- reg, bit . ; tests a bit in a register and skips next instruction if

; clear
srbs  reg. bit ; tests a bit in a register and skips next instruction if
i set

Major program J: frequency counter

© Multiple seven segment display

~® Timing + counting

e Watchdog timer

We will end the chapter with a large project covering the key issues raised. We
will design a frequency counter with a range 1 Hz-999 kHz. The frequency will
be displayed on three seven segment displays, giving the frequency in Hz if it is
less than 1 kHz, and in kHz otherwise. An LED will indicate the units. As an
added feature, the device will stay on only when a signal greater than 1 Hz is
fed into the input, and it will go to sleep when such a signal disappears. The
circuit diagram is shown in Figure 2.25.

Notice that as we will be strobing the seven segment displays, each display will
be on for only one-third of the time. In order to give each LED the same average
current as it would be getting if it were being driven continuously, we need to
divide the LEDs’ series resistors by 3. Assuming 2 5V supply and a 2 V drop
across the’LED, there will be 3 V across the resistor. To supply a current of 10 mA
to the LED if it were driven continuously, we would therefore choose a resistor
value of 300 ohms. For this case I have therefore gone for a value of 100 ohm:s.

.. There are two ways to measure frequency. For high frequency signals it is
best to take a fixed amount of time and count the nuimber of oscillations on the

“input during that time. This can then be scaled up to represent a frequency. For

lower frequency signals this method becomes too inaccurate, and so instead we
measure the length of time between rising edges on the input. The program will
have: to work out whether the input frequency is high or low. and thersfare
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We have only one timer/counte , which is an inconvenjence,
but something we can live with. For high frequency signals it is necessary to use |\
T/CO to count the input 51'gna13 as 1t will be difficult to test the input reliably, For
lower frequency signals it will be eas ctly, and more

_ sier to test the input dire
importantly to measure time accurately,

. This will be a long prog

: ram, so it is al}
the more important to have a clear flow

chart, shown in Figure 2.26.
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The test for high frequency signals takes the shortest time (64 ms), so the
program will run this first. If the frequency measured is less than 1 kHz, the
program will jump to the low-speed testing. The idea behind the high-speed

* testing is to time 64 ms by counting clock cycles (i.e. without T/C0), and count

signals on T/CO. The only problem is that for timing up to 1 MHz, we would
expect 64 000 cycles, i.e. well above 256. We therefore need to be monitoring

- T/CO to see when it overflows, and increment a counter which would act as a

higher byte for T/CO. You can now see why I chose 64 ms. The maximum
number which can be stored over two registers is OXFFFF = 65 536, so 64 000
is close to the maximum. Furthermore to convert the number of counts into a

- frequency in kHz, we need only to divide the number of counts by 64. Dividing

a number by 2" is easy — we simply rotate the number to the right n times (you
may want to try this out on paper). This makes 64 ms an ideal choice.

For the low-speed test, we change T/CO to count internally. We wait for the
input to change and then start timing. waiting until the input changes a further
two times before stopping again (this times the length of one cycle). Again. if
we look at 1 Hz. with T/CO counting at 4 MHz, this represents 4 million cycles,
and we will need three registers to hold the entire number. If the time is greater

* than these three registers can hold. we know the time is less than 1 Hz. and so

send the AVR to sleep. The WDT will be set to wake up the AVR every 1024

. ms (i.e. about once a second). though note that in normal operation the WDT

" will have to be cleared regularly.

For the Init section, set up the ports with no pull-up on the input signal pin.
Also, set up the WDTCR to enable the WDT to reset every 1024 ms, and
configure MCUCR to enable deep (power-down) sleep.

We now need to carefully construct the main loop in which the timing will be
Jarried out — this is the most important part of the program. We can guess that
the loop is going to take somewhere between 4 and 10 cycles. so for 64 ms =
256 000 clock cycles, we are going to have to count down between 64 000 and

25 600 times, we can therefore make a guess that fwo counting registers

Delay! and Delay2) can be used to count the time. but we will have to actually
write the loop before we can be sure. Before we enter the loop we will have to
set up the delay registers (we don’t know what we will have to move into them
1s this depends on the loop length), set up how T/C0 is going to count, and reset
T/CO0 to 0. We will also use the move 0510000000 into Port B to turn on the kHz
_ED and reset the display. You will notice there is also a line clearing a register
called upperbyte, we will see the significance of this register shortly.

Idi Delayl, 77 R
1di Delay2, ?? H

Idi temp, 0b00000111 ; sets T/CO to count rising edge
out TCCRGO, temp 3 onTO0 (PD4)
di temp, 0b10000000 ; turns off all displays and turns on
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out  PortB, temp s kHzLED

clr upperbyte
clr  temp
out  TCNTO, temp

; clears a counting register
; resets Timer 0
5

The loop itself starts with the standard decrementing of the 2-byte number
spread over the delay registers, skipping out of the loop if the time has passed:

HighSpeed: .
subi Delayl, 1 ; decrements Delay1
sbei Delay2, 0 ; decrements Delay?2 if carry high
bres  DoneHi ; jumps out of loop if time passed

We then need some way of testing to see if T/CO has overflowed. There are two
ways of doing this. The simplest is to test the timer-overflow flag, which, unlike
the other flags we've met so far. is stored in the TIFR /O reaister.
Unfortunately, we cannot test this flag directly with the sbic or sbis instructions.
as it is number 0x38 which is greater than Ox1F. We would therefore have to
read TIFR into a working register. then test the bit. More irritating is the fact
that we need to reset it by writing a one 1o it. Again, we cannot use the sbi
instruction, and instead have to do it through a working register. This overall
process takes five instructions. but there is an alternative method which only
uses four. The concept behind this method is to store the current value of T/CO
and compare it with the value that was in T/CO the previous time in the loop.
We would expect the current value to always be greater than the previcus value,
except when it overflows. By comparing the old and new values, and branching
if the new is less than the old, we therefore detect an overflow, and no resetting
of flags is needed. In the code below, we use register temp to store the new
value, and temp2 to store the old value:

mov  temp2, temp
in temp, TCNTO
cp temp, temp2
brsh HighSpeed

; copies temp into temp2 (old value)

; reads new value into temp

s compares old and new

; loops back if new is ‘same or higher’

If you count through the total HighSpeed loop of seven instructions, you will
see it takes eight clock cycles if T/CO doesn’t overflow (remember a
branching instruction takes two clock cycles). What.we need to do now is
construct a similar loop that will increment the higher byte, see if it’s too high,
decrement our counting registers, skip out if they’ve reached zero, and loop
back to HighSpeed, all in the same number of clock cycles. This final part is
crucial to ensure the'timing is perfect. Fortunately we can do it all, with a

ﬁ clock cvcle to snare! We tharafara 11aa man $a swarta Aams aconla Tha —, ..
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number of counts we are allowing on the input is 63 999 in the 64 ms (i.e. 1
MHz is just too high, and so 64 000 is just too high — 64 000 translates as
0xFAOQ0, which is handy as we can simply test if the upper byte has reached
OxFA). If it has we know how to skip out of the loop:

; increments higher byte
; too high?

inc  uppérbyte
cpi  upperbyte, 0xFA

breq TooHigh ; skips out of loop if too high

subi Delayl, 1 ; decrements counting registers
sbei  Delay2, 0 3

bres  DoneHi ; skips out of loop if done counting
nop ‘ ; wastes one cycle

rimp HighSpeed ; loops back

Now you may be thinking ‘hang on, there are nine cycles in the above segment,
not eight!’. You are right, of course, but think about the number of cycles in the
previous section if the program does nor loop back to HighSpeed. If the
program does nor loop back. it does not branch. and so takes one less clock
cycle. We make up for this one less clock cycle in the loop above with one more
in this loop. Thus in the running of this whole section. the counting registers
will either decrement once every eight clock cycles or twice every 16 clock
cycles. You may want to write the whole loop down and work through it 1o
convince vourself of this. Now that we know the delay registers decrement
every eight clock cycles, we can work out what to initialize them to in order to
create a 64 ms delay.

. EXERCISE 2.37 What should Delayl and Delay2 be initialized to?

That’s the hardest part done! We now need to immediately store the current
value of T/CO. The only problem is, what if T/CO has overflowed in between the
last test for overflowing and now? We need to use the same test as before.

EXERCISE 2.38 Write the six lines which make up the section called DoneHi.
which stores T/C0 into lowerbyte, and compare this value with temp (which
represents the old value of T/CO). If lowerbyte is ‘same or higher it skips to a
section called Divide64, if it isn’t, it increments upperbyte, tests to see if it has
reached 0xFA, and jumps to TooHigh if it has.

The next section needs to divide the 2-byte number split up over lowerbyte and
upperbyte by 64 = 2%. We do this by rotating the whole number six times; to
rotate the upper byte into the lower byte, we rotate the upper byte right with zeros
filling bit 7, and then rotate the lower byte right with the carry flag filling bit 7.

EXERCISE 2.39 What two lines divide the 2-byte number by 2?
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The Divide64 loop does this six times. First we set up temp with the number 6,
then divide by 2 as we’ve done above. Then decrement temp, looping back if it
does not equal zero. We don’t want to reset temp with 6, so we really want to
jump to Divide64 and then skip one instruction. This can be done using the
following trick:

rjmp Divide64+1 ; jumps to Divide64 and then skips one

This works with any jumping/branching instruction, and for any number of
skips. Note that large skips (e.g. +8) lead to unwieldy programs which are hard
to follow and easy to get wrong. ’

2

EXERCISE 2.40 What five lines make up the Divide64 section?

We test to see if the number is too low. The 2-byte word holds the frequency in
kHz, so if this number is less than 1 (i.e. 0) we know how to change to the low-
speed testing method. ‘

EXERCISE 2.41  What four lines test to see if both bytes are 0, and skips to
LowSpeed if they are.

We then need to convert this number split over 2 bytes into a number of
hundreds. tens and ones so that they can be displayed easily. This will be done
in a subroutine. as we will have to do it in the LowSpeed section as well. To do
the conversion we will call DigitConvert. As the displays are being strobed, we
need to be calling a display subroutine at regular intervals. Unfortunately, our
carefully constructed timing loop above.cannot accommodate the calling of a
display subroutine, as this would insert large numbers of clock cycles and
disrupt the timing. The timing routine only takes 64 ms, so the idea here is to
leave the displays idle for 64 ms, and then let them run for half a second.

We stick in a simple half second delay using counting registers, making sure
we call the Display subroutine during the loop.

EXERCISE 2.42  Write the nine instructions which set up the three delay regis-
ters, and then create a half second delay loop which also calls Display. When
the required time has passed, the program should jump back to Start. You will
have to take the length of the Display subroutine into account when doing your
calculations. The reall instruction actually takes three cycles, and the ret
instruction takes four. On average, the subroutine itself will take two instruc-
tidéns, so assume the whole subroutine action adds nine cfock cycles to the loop.

- Call the delay loop HalfSecond.

3

All that remains in the high-speed timing method is to deal with the TooHigh
section, which simply has to make the display registers show —HI. The numbers




84 Basic operations with AT90S1200 and TINY12

to be displayed will be stored in registers cal!ed Hundreds, Tens and O]nesci
There will be a look-up table as before, except in this table 10 \:vx,ll be trans| ﬁtg

as the symbol for an ‘H’, and 11 as the svmbol for a hyphen ‘-’. A 121w(1j 1 be
translated as a blank space (i.e. no segments on), and so you should set all igits
to 12 in the Init section. We therefore need to move 11 into H.undreds, 10 1pto
Tens and a 1 into Ones (as a 1 will look like an I), and the Display subroutine
- will do the rest. After this we jump to three lines before the start Halngcond
section (these three lines previously set up the HalfSecond counting registers).

EXERCISE 2.43  What four lines make up the TooHigh section?

This marks the end of the high-speed timing method, and therefore the halfway

int i rogram. .
po‘l?étl‘: ﬁgsepa fo,ok at the DigitConvert subroutine. This takes a number split
over upperbyte and lowerbyte, and converts itinto a number of hundreds, tens
and ones. This is done by repeatedly subtracting 100 from thq 2-byte numt.wcr
until there 1s a carry. 100 is then added back. and.the process is repeated with
10. The number left in the lower byte after this is simply the number of cnes. so
we can just move the number across. Once we have extracted the number of
hundreds, we no longer need to involve the upper byte. as we know the nu.mbf:r
1S now cn‘tirel_\,' contained in the lower byvte (if the number is less than 100 it fits
in one byte).

DigitConvert:

clr Hundreds : resets registers
cir Ones :
cir Tens o

' Fl]ldHundredssx;bi lowerbyte, 100 ; subtracts 100 from lower byte
sbei upperbyte, 0 ; subtracts 1 if carry

bres FindTens : does 10°s if carry

inc Hundreds : increment number of hundreds
rimp FindBundreds ; repeats

Findfens: subi lowerbyte, -100 ; adds back the last 100
subi lowerbyte, 10 ; subtracts 10 from lower byte
bres  FindOnes ; does 1’s if carry
inc Tens ; increments number of tens .
rimp FindTens+1 ; repeats, but doesn’t add 100 again
FindOnes:

subi lowerbyte, -1  ; adds back the last 10
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mov ones, lowerbyte ; number left in lowerbyte = ones
ret ; finished

You may want to work your way through this program with a sample number
(e.g. convince yourself that 329 gets reduced to 3 hundreds, 2 tens and 9 ones).

The other subroutine is Display. This has to choose which of the three
displays to activate, find the appropriate number in Hundreds, Tens or Ones.
and then display it. In the half second loop we've written, the subroutine is
called about once every 4 ms. We can’t make the displays change this often as
the LEDs won't have time to turn fully on and the display will be faint with
shadows (numbers on other displays appearing on the wrong display). We there-
fore build in an automatic scaling of 50 - i.e. the subroutine returns immedi-
ately having done nothing 49 times. and then on the 50th time it's called. it
performs the display routine, and then repeats. This means the displays are
changing every 0.2 ms which is far better: however. should you experience any
of the efiects described above, you may wish to increase 50 to a higher value.

We will use a register called DisplayCounter. This will be set up in the Init
section with the value 50. The beginning of Display thercfore decrements
DisplayCounter. and returns if the result is not 0. If it is 0. DisplayCounter
should be reloaded with 50. Furthermore. we can take this opportunity to clear
watchdog timer. This must be done regularly. and the Display subroutine is
called regularly in whichever part of the program it happens to be (by regularly
I mean at least once a second). A simple solution is therefore 1o reset the WDT
when the Display subroutine continues.

EXERCISE 2.44  Write the five lines at the start of the Display subroutine.

We need some wav to know which display we.will be displaying. and will store
this as a number between 0 and 2 in a register called DisplayNumber.
Therefore, the first thing we do is increment DisplayNumber and reset it to 0

if it has reached 3 (you will also have to clear DisplayNumber in the Init
section). '

EXERCISE 2.45 Write the subsequent Jour lines of the subroutine which
perform this. ‘

Now we need to do some serious indirect addressing! First, we extract the right
number to be displaved from Hundreds, Tens or Ones. You will have to define
these at the top of the program, | defined mine as R2§, R27 and R28 respec-
tively. We therefore set up ZL to point to R26 (move 26 into ZL), and then add

- the number in DisplayN umber. This will point to one of the three numbers we

Want to display. Using the Id instruction we load this value into temp. The seven
segment display codes are stored in registers RO-R12, and so we now zero ZL

& to RO (move 0 into it). Addine to RO the pumbarread inea torman oAyt a2 L.

At
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the seven segment code of the number to be displayed. Again, load this value
into temp. We mustn’t clear bit 7 of PortB if it is on (indicating kHz). Therefore,
test bit 7 of Port B, if it is on, OR the number in temp with 0b10000000, and
then in either case move temp into Port B.

EXERCISE 2.46 Write the nine lines which output the correct seven segment
code to Port B.

The remainder of the subroutine must turn on the correct seven segment display.
Remember the essence of strobing: the number you have just outputted to Port
B is going to all of the displays, but by turning only one of them on, the number
only appears in one of the displays. We basically want to turn on PortD bit 0.
then bit 1, then bit 2 and then back to bit 0. The easiest way to do this is to read
PinD into temp. rotate it left without letting any s creep in (i.e. use Isl), test to
see if bit 3 is high (i.e. gone too far), and reset the value to 0b00000001 if it'is.

EXERCISE 2.47 What six lines turn on the correct display and then return from
‘the subroutine?

Now all that is left is the low-speed testing section. We need to set up T/CO0 to
count up every clock cvcle (this gives us maximum resolution). We also need to
(reset) clear the delay registers Delav2 and Delay3. and clear PB7 to turn on the
Hz LED.

EXERCISE 2.48 What five lines will start off the LowSpeed section?

‘We need a way to see when PD4 changes (remember now T/CO is counting
internally we need to test the input pin manually). There are a few methods at
our disposal, the one 1 suggest is as follows. Store the initial value in PinD, and
then enter a loop which reads in the cutrent value of PinD. and exclusive OR it
with the initial value. The effect of the EOR is to highlight which bits are
different.

0b00011001
EOR 0b10001001
0b10010000 < shows that bits 7 and 4 were different

Example 2.9

We are interested only in bit 4 (PD4) which is connected to the input, and so
after performing the EOR we can test bit 4 of the answer and keep looping until
it is high. When in any loop that lasts a long time (as this one might), we must
also keep calling the Display routine.

; stores initial value

. lppqﬂs Ajenlase ~afmn

in store, PinD
FiretChanan: »rall Pienlay

- - f e JR—
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in store2, PinD  ; reads in current value
eor store2, store  ; EORs current and initial values
sbrs store2, 4 ; skips out of loop if PD4 changed

rjmp  FirstChange ; keeps looping until PD4 changes

The main loop of the low-speed testing section consists of repeating the above
test for nwo changes (i.e. wait for one complete period of the input’s oscillation),
and incrementing the higher bytes when T/C0 overflows. We deal with the T/CO
overflow in the same way as before, with one important difference. We cannot
use temp to store the old value because temp is used repeatedly in the Display
subroutine we have just written. It is very important you look out for these kinds
of traps as they can be a source of many problems — try to keep your use of
working registers local (i.e. don’t expect them to hold a number for too long).
in this way you can use a register like temp all over the program. We can use
Delayl instead of temp, as at the end of the Jooping, we want Delay1 to hold
the current value in T/CO.

Before we enter the low-speed loop we need to clear Delay1 and T/C0. We
will also need some sort of counter to count the number of times the input

changes. We need it to change only twice, so.set up a register called Counter
and load 2 into it. ’

EXERCISE 2.49  Write the three pre-loop instructions.

Now the loop looks for a change in the input in the same way as before, and
Jjumps to a section called Change if there is a change.

C o
EXERCISE 2.50 Wite the five lines which perform this test. (HINT: One of
them is before the start of the loop, call the loop LowLoop.)

We then call the Display subroutine, as we have to do this regularly. then test to
see if the T/CO0 has overflowed. If it hasn’t overflowed, loop back to LowLoop.
If it has overflowed. increment Delay2, and if this overflows increment Delay3.
The minimum frequency is 1 Hz, and hence the maximum amount of time is
about 4 000 000 counts, which in hexadecimal is 0x3D0900. Therefore if

Delay3 reaches Ox3E we know the input frequency is too slow and will jump to
a section called TooSlow. '

EXERCISE 2.51 Challenge! What 1] lines form the rest of the low-speed
section. 7

The Change section should decrement Counter, and loop back to LowLoop if
it isn’t zero. On th; second change, it doesn’t loop back but instead checks to
see if the stored number is low enough to deserve high-speed testing. The

B O - S Y DB LI L v AAA TYL
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to 4004 clock cycles, hence if the result is 4000 (0XFAO) or less we should
branch to Start and perform the high-speed testing. It may not be eptxrely clear
how we test to see if the number spread over three registers is less than
0x000FAO. For a start, we cannot subtract the number, as this.would f:hange the
number in the delay registers. Instead, we use the compare instructions as we
would if we were just testing one byte, but also make use of tl?e cpe instruction,
which compares two registers and also takes the carry f'!ag into account. It is
simply analogous to subtracting with the carry (e.fg. sbc1. but without actually
changing the registers). The only problem with cpc is that it only works between
two f‘ilebregisters, not a file register and a number, so we have to load the
numbers into temporary working registers. The necessary lines for Change are
therefore:

Change: in store, PortB ; updates new value of PortB
"~ dec Counter ; waits for second change
brne  LowLoop ; not second change so loops

1di temp, 9x0F
Idi temp2, 0x00
cpi Delayl, 0xA0
cpe Delay2, temp
cpe Delay3, temp2
brcc  PC+2

rjmp  Start ;

sets ups temporary registers

20 se e

compares three-bvte number with
0x000FA0

20 e e

less that FAO so goes to high-speed

You will notice that instead of the expected line (bres Start) - i.e. bfanc‘h
o Start if the carry flag is set, we choose to skip the (rjmp ‘ Start) }me if
the carry flag is clear. These two methods are clearly identical in their end
result, but why introduce an extra line? The reason lies in the fact that‘the.br.cs
can only branch to lines which are 64 instructions away. The Start hqe is, in
fact, further away than this, and so must be branched to using the rjmp instruc-
tion. Points like this will be picked up when you try 10 assemble the program
and are generally missed at the writing stage — so you don’t have to start
counting 60 odd lines whenever you introduce a bres or similar instruction. .
We then convert the time period of the oscillation into a frequency. To do this
we need to take 4 000 000 and divide it by the length of time (in clock cyc!es)
we have just measured. If we measured 40 000 clock cycles over one 'pe.:r.:od,
this will correspond to 100 Hz. There is a way to perform binary long division,
out by far the simplest method of dividing x by y is to see how many times you
=an subtract y from x. This does take fewer instructions, but will take longer to
-un.- We set up 4 000 000 = 0x3D0900, spread over three temporary registers
‘temp, temp2 and temp3). Every time we successfully subtract the number
spread over Delayl, Delay2 and Delay3, we increment a lower byte of the
answer. When this overflows, we increment the higher byte. The answer will be

R
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between 1 and 1000 so we need only two bytes for the answer. The following
lines set up the division:

Idi temp, 0x00
1di temp2, 0x09
Idi temp3, 0x3D
clr lowerbyte
clr upperbyte

moves 4 000 000 spread over 3
temporary registers

resets the answer registers

.
9
.
9
.
b
*
.
k]

EXERCISE 2.52  WTite the eight lines of the lqop called Divide which divides
4 000 000 by the number in the delay registers. (Hint: Call the next section
DoneDividing and jump to this section when a subtraction was unsuccessful
(carry flag was set).)

As with the high-speed section, we then convert the number in lowerbyte and
upperbyte into hundreds. tens and ones. We can use the DigitConvert subrou-
tine we have already written. The program then loops back to LowSpeed.

EXERCISE 2.53  What 1o lines wrap up the low-speed testing loop?
All that remains is the section called TooSlow which is branched 10 when the

period of oscillations is more than one second. In this case we want to turn the
displays off and send the AVR 1o sleep.

EXERCISE 2.54  Write the three lines which make up the TooSlow section.

You will have to remember to set up registers RO to R11 with the correct seven
segment code in the Init section. As you can use only the 1di instruction on
registers R16-R31 vou will have to move the numbers first into temp. and then

move them into RO to R11 using the mov instruction. Also. remember to set up -

PortD with one of the displays selected (e.g. 0b00000001), and define all vour
registers at the top of the program. It should now be ready for testing with the
simulator. This may be worth building as it performs a useful function:
however, you will notice that its resolution isn’t great as you get only three-
figure resolution between 100 Hz-999 Hz and 100 kHz-999 kHz. You may
Wwant to think about ways to improve the program to give three-figure resolu-
tion for all frequencies in the given range. In the coming chapters we will learn
methods that will allow us to simplify this program hugely, and it will be worth
coming back to this at the end and gleefully hack bitsbff to trim down the
program.

Working on this larger program also introduces the importance of taking

V breaks. Even when you are ‘in the zone’ it is always a good idea to step back for

a few minutes and relax. You will find you return looking at the bigger picture

Hand mav find van are Auerlanbing camaatlin. Ao vl e
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help reduce such oversights. Another good piece of advice is to talk to people

about decisions you have to make, or problems when you get stuck. Even if they
don’t know the first thing about microcontrollers, simply asking the question
will surprisingly often reveal the answer.

3
Introducing the rest
of the famiiy

So far, we have been looking at the most basic types of AVR, the 1200 and the
Tiny AVRs. 1 will now introduce some of the differences between these and
other AVRs, so that in the subsequent chapters they might appear more familiar,
Other models may benefit from extra memory called RAM. The allocation of
memory differs in different models. but follows the arrangement shown in
Figure 3.1.

WORKING | 00
REGISTERS | -
RO-R31 |, :
20 s
/o
REGISTERS
$00-$3F

Figure 3.1

The first 32 addresses are the working registers afid the next 64 are the 1/O
registers. So the key difference between those with RAM and those without is
the presence of further memory spaces from $60 onwards. These can be
accessed using the 1d and st commands already introduced, and with other
instructions now available on these more advanced models. A significant
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chanee to the working registers is the introduction of two more 2-byte register
pairs.u In addition to Z (made up of R30 and R31), there is now Y (made up of
R28 and R29), and X (made up of R26 and R27). They can be used in any
instruction that takes a Z (e.g. 1d, st, lpm etc.).

Whilst there was a dedicated three-level stack on the 1200 and Tiny AVRs,
the other models require that you tell them where in the RAM you want your
stack to be. This means it is potentially as deep as the RAM address space,
though obviously you may be wishing to give some of the RAM addresses a
more glamorous purpose. What we will do is make the last address of RAM the
top of the stack. In this way we have what looks like an upside-down stack, as
shown in Figure 3.2, which works in exactly the same way as any other stack.

PAM

Address 000

Last address Top of stack

Figure 3.2

The 1/O registers SPL and SPH are the stack pointer registers (lower and
higher bvtes), and so we move into these the last address of the RAM. This is
he]pfu]l); stored for us in the include file we read at the top of each program as
RAMEND. We therefore load the lower byte of RAMEND into SPL and the
upper byte into SPH, and thus point the stack to the end of the RAM. The
instructions are:

1di temp, LOW(RAMEND) ; stack pointer points to
out SPL, temp _ 5 last RAM address
1di temp, HIGH(RAMEND) ;

out SPH, temp - 3

Thic mngt talra mlana in the Init cantine hafqre oo myhenrytinan ara aallad” Fnr
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devices with only 128 bytes of RAM, RAMEND is only 1 byte long, so the last
two lines given above should be omitted.

Another major difference seen in the other models is a greater set of instruc-

tions. First, you are given greater flexibility with the Id and st instructions. You
can make the ‘long’ registers X, Y or Z being used as an address pointer auto-
matically increment or decrement with each load/store operation: -

1d reg, longreg+
This loads the memory location pointed to by a double register (i.e. X,Y or Z)
into reg, and then adds one to longreg. .

Id reg, -longreg

This subtracts one from the double register (X. Y or Z), and then loads the
memory location pointed to by that double register into reg. There are analo-
gous instructions for st.

We can use this to shorten our multiple register clearing routine. In this case
1 have chosen to use X and the indirect address pointer, so this routine clears
registers up to R25.

cir XL s clears XL ¢
cir XH ; clears XH

ClearLoop: st XH, X+ ; clears indirect address and increments X
epi XL, 26 ; compares XL with 26

brne ClearLoop ; branches to ClearLoop if ZL =26
Other enhancements to load/store operations include:
idd reg, longreg+number

This loads the memory lacation pointed to by the Y or Z registers into reg, and
then adds a number (0-63) to Y or Z. (Note: doesn t work with X.) There is an
equivalent instruction for storing, std, which works in the same way. There is
also a way to directh: address memory in the RAM:

lds reg, number

This loads the contents of memory at the address given by number into reg.
The number can be between 0 and 65 535 (i.e. up to 64K). Similarly, sts stores
the number in a register into a directly specified address.

Indirect jumps and calls are particularly useful and are specified by the
number in the Z register: B :

icall  ; calls the address indirectly specified in Z
. 8- LR L |
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Example 3.1 We have a program that has to perform one of five different
functions, depending on the number in a register called Function. By adding
Function to the current value of the program counter, and jumping to that
address, we can make the program branch.out to different sections:

cir ZH . ; makes sure higher byte is clear
1di ZL,JumpTable ; points Z to top of table
add ZL, Function ; adds Function to Z
ijmp ; indirectly jumps

JumpTable: rjmp  Addition ; jumps to Addition section
rjmp Subtraction ; jumps to Subtraction section
rjmp Multiplication  ; jumps to Multiplication section
rjmp Division ; jumps to Division section
rimp Power ; jumps to Power section

Notice that JumpTable is loaded into Z, this is translated by the assembler as
the program memory address of the line it is labelling. We do this to initialize
Z to point to the top of the branching table (rjmp Addition). Note that

loading JumpTable is equivalent to loading PC+3. The number in Function is

then added to Z, so that the number in Function (between 0 and 4) will make
the program jump to one of the five sections.

You will no doubt remember the number of additions and subtractions we had
to do to 2-byte numbers in the frequency counter project. Here are two new
instructions that may help:

adiw  longreg, number
sbiw  longreg, number

These add or subtract a number between 0 and 63 to/from one of the 16-bit

registers (X, Y or Z). The ‘w’ stands for word (16 bits). If there is an overfiow
or carry this is automatically transferred onto the higher byte. Hence:

: sbiw

The two remaining instructions that are added to the repertoire of the more
advanced AVRs are:

subi XL, 50

sbei  XH, 0 XL, 50

push  register
pop register

So far we have only been using the stack for the automatic storage of program
counter addresses when calling subroutines. Using these instructions, you can
push or pop the number in any working register on to or off of the stack.
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Example 3.2 We can use the push and pop instructions to create a palindrome
detector. A palindrome is essentially 2 symmetric sequence (like ‘radar’,
‘dennis sinned’ and ‘evil olive’). We can massively simplify this problem by
also requiring that we are given the length of the input sequence. We can use the
length to find the middle of the input. We can also assume that the input is fed
(as an ASCII character) into a register called Input. ASCII is a way to translate
letters and symbols into a byte, so each letter corresponds to a particular byte-
long number. So effectively we are looking for the sequence of bytes fed into
Input to be palindromic (symmetric). We start by pushing the number in Input
on to the stack. We do this for every new input until we reach the half-way point.
We then start popping the stack and comparing it with the input. As long as each
new input continues to be the same as the popped number, the sequence is
potentially palindromic. If the new input fails to be the same as the popped
number, we reject the input sequence. PinD, bit 0 will pulse high for
1 microsecond to indicate a new input symbol (we need this because we cannot
just wait for the input symbol 1o change, as this would not respond to repeated
letters). :

First. we assume the length of the word is stored in Length. This has to be
divided by two to get the half-way point. We will have 1o make a note if the
length is odd or not. This is done by testing the carry flag: if it is high Length
wias odd and we shall sct the T bit.

Start: mov HalfLength, Length ; divides Length by 2 to get
Isr HalfLength ; HalfLength
in temp, SREG ; copies Carry flag into T bit
bst temp, 0 ;3  i.e.sets T-bit if Length is odd

Assuming the first input byte is in Input,-we push it on to the stack and then
wait for the pulse on PinD, bit 0. The pulse lasts 1 microsecond, so assuming a
4 MHz clock it must be tested at least once every four cycles. In the segment
below. it is tested once every three cycles,

FirstHalf: push  Input - ; pushes Input onto stack
Pulse: sbis PinD, 0 ; tests for pulse
rimp  Pulse ; keeps looping

When a pulse is received (i.e. a new input symbol is ready), the program incre-
ments Counter which is keeping track of the input number. It compares this
number with HalfLength and loops back as long as Counter is less than
HalfLength. A

inc  Counter

cp Counter, HalfLength

brlo FirstHalf

; counts the input number
; compares with half-way value
; loops back to start and skips one
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When Counter equals HalfLength we check the T bit to see if the length of the
input is odd or even. If it is odd, we need to ignore the middle letter, so we reset
the T bit and loop back to Pulse which will wait until the next input is ready. If
the length is even we can skip on to test the second half of the input.

brtc SecondHalf ; test T bit
clt ; clears T bit
rimp  Pulse ;

We have now passed the half-way point in the sequence and now the new input
svmbols must match the previous ones. The top of stack is popped and
compared with the current input. If they are not equal the sequence is rejected.

SecondHalf: pop Input2 ; pops stack into Input2
cp Input, Input2  ; compares Input and Input2
brne Reject ; if different reject sequence

As before. we then increment Counter and test to see if Counter equals
Length. If it does. the testing is over and we can accept the input. If we haven't
vet reached the end the program then waits for the input to change. and then
ioops back to SecondHalf.

inc Counter ; counts the input number
cp Counter, Length : compares with total length
breq Accept : end of sequénce so accept
! . Pulse2: sbis PinD, 0 ; waits for pulse
rimp  Pulse2 H
rjmp  SecondHalf ; loops back when new input is
. 3 ready

You might wan to play around with this on the simulator. but don’t forget to set
up the top of the stack as described at the start of the chapter.-You may also want
to think about how to remove the need to be given the length of the input
sequence. 1t you want to find out more about this, you may want to find a book
on Formal Languages and Parsing.

e

4
Intermediate operations

Interrupts

So far we have always had to test for certain events ourselves (e.g. test for a
button to be pressed, test if T/CO has overflowed etc.). Fortunately there are a
number of events which can automatically alert us when they occur. They will,
if correctly set up, interrupt the norma} running of the program and jump to a
specific part of the program. These events are called interrupts.

On the 1200, the following interrupts are available:

o Interrupt when the INTO pin (PD2) is low

o Interrupt when there is a rising edge on INTO

o Interrupt when there is a falling edge on INTO

& Interrupt when T/CO overflows

o Interrupt when the Analogue Comparator triggers a result

The first three constitute an external interrupt on INTO, and are mutually exclu-
sive (i.e. you can enable only one of the three interrupts at any one time). The
significance of the Analogue Comparator will be discussed later on in the
chapter. When an interrupt occurs, the program will jump to one of the addresses
at the start of the program. These addresses are given by what is known as the
interrupt vector table. The interrupt vector table for the 1200 is shown in Table
4.1, the tables for the other AVR types are shown in Appendix E.

Table 4.1

Type of Interrupt/Reset Program jumps to address ...

Power-on/Reset 0x000
External interrupt on INT0 0x001
T/CO overflow interrupt 0x002
Analogue comparator interrupt 0x003

L 4
For example, when the T/CQ overflow interrupt is €nabled, and T/CO over-
flows, the program drops what it’s:doing and jumps to.address 0x002 in the
program memory. When using all three interrupts, the start ‘of the program
should look something like the following:

pv—

—
e e s - o
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; first line executed

; handles external interrupt
; handles TCNTO interrupt
; handles A. C. interrupt

rimp Init

rjmp ExtInt

rjmp  Overflowlnt
rjmp ACInt

This will ensure the program branches to the correct section when a particular
interrupt occurs (we will call these interrupt handling routines). We can enable
individual interrupts using various registers. The enable bit for the External
INTO interrupt is bit 6 in an I/O register called GIMSK (General Interrupt
Mask). Setting this bit enables the interrupt, clearing it disables it. The enable
bit for the TCNTO overflow bit is bit 1 in the TIMSK I/O register (Timer
Interrupt Mask). However, all of these interrupts are overridden by an inter-
rupts ‘master enable’. This is a master switch which will disable all interrupts
when off, and when on it enables all individually enabled interrupts. This bit is
the I bit in SREG (you may want to glance back to page 73).

The External INTO interrupt can be set to trigger in one of three different
circumstances, depending on the states of bits 0 and 1 of the MCUCR 1/0 register
(the one that also holds the sleep settings). This relation is shown in Tablc 4.2.

Tabie 4.2
MCUCR Interrupt occurs when ...
Bitl Bit 0
0 0 INTO is low
0 1 Invalid selection
1 0 There is a falling edge on INT0
] 1 There is a rising edge on INT0

When an interrupt occurs, the value of the program counter is stored in the
stack as with subroutines, so that the program can return to where it was when
the interrupt handling is over. Furthermore, when the interrupt occurs, the
master interrupt enable bit is automatically cleared. This is so that you don’t
have interrupts occurring inside the interrupt handling routine which would
then lead to a mess of recursion. You will probably want to re-enable the master
interrupt bit upon returning from the interrupt handling routine. Fortunately
there is a purpose-built instruction:

reti H

This returns from a subroutine and at the same time enables the master inter-
rupt bit.

Each interrupt also has an interrupt flag. This is a flag (bit) that goes high
when an interrupt should occur, even if the global interrupts have been disabled
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and the appropriate interrupt service routine isn’t called. If the global interrupts
are disabled (for example, we are already in a different interrupt service routine)
you can test the flag to see if any interrupts have occurred. Note that these flags
stay high until reset, and an interrupt service routine will be called if the flag is
high and the global interrupt bit is enabled. So you must reset all flags before
enabling the global interrupt bit, just in case you have some interrupt flags
lingering high from an event that occurred previously. Interrupt flags are reset
by serting the appropriate bit — this sounds counterintuitive but it’s just the way
things are! The T/C0 Overflow interrupt flag is found in bit 1 of TIFR (Timer
Interrupt Flag Register — 1/O number $38), and the INTO interrupt flag is in bit
6 of GIFR (General Interrupt Flag Register— 1/0 number S3A).

Program K: reaction tester

e Interrupts
e Random number generation
® Seven segment displays

The next example program will be a reaction tester. A ready button is pressed.
then an LED will turn on a random time later (roughly between 4 and 12
seconds). The user has to press a burton when they sce the LED turn on. The
program will measure the reaction time of the user and display it in millisec-
onds on three seven scgment displays. 1f the user presses the button before the
LED turns on they will be caught cheating. The circuit d:aoram for the project
is shown in Figure 4.1, and the flowchart in Figure 4.2.-

We will be using the External INT0 and TCNTO Overflow i interrupts, so you
will have to make the necessary changes to the top of the program. Note that as
we will not be using the Analogue Comparator interrupt we don’t need any
particular instruction at address 0x003.

EXERCISE 4.1 What are the first three instructions of the program?

Write the Init section. setting T/CO to count internally at CK/1024. You will
have to enable the External INT0 and T/CO Overflow interrupts, but don't set
the master enable just yet. Set the External INTO interrupt to occur when INTO
is low (i.e. when the button is pressed).

EXERCISE 4.2 What are the six lines which individually enable the interrupts?
.l}
At Start we first call the Display subroutine, and then test the ‘Ready’ button

(PinD, 1). Keep looping until the Ready button is pressed.

EXERCISE 4.3 What three lines achieve this?




+5V

e ——

 huterimediate operations 101

z
% R
-5 3 : ‘.
X & ‘ Set-up External interrupt S
3 dl
<
D & s YES
| |" Update display |
I
S ‘5 *avae© NO
m L (5 “Ready” bumop Store TCNTO val ]
2 v
Il NOUova Move “bAd” into e .
o O display registers ] e
3 o3 ’ T Convert time into 3
{)‘l[ 1 I Generate random number ' ’ ‘ digit number
Y l o
Ll
L Enable interrupts I )
Return without
enabling interrupts
mlw .-l hoforl= .
11
E<§§ §§§§_§§§ Are interrupts
Lk 8 g enabled?
& \ TCNTO Overflow Interrupt
oA ane 80 NO
2z S I
<< - @
S|Besgazes |2 s LED on?
N~
o
- 8 - Has random time
o = increment higher
byte
: Turn on LED ]
1 : ol
ol _olololofel EEIE U= LI Return enabling
interrupts
—— m w1
0?_: Figure 4.2
g The Display subroutine will be almost exactly like the one in the frequency
ﬁ - counter project. The only difference lies in the selecti@n of the correct display.
v Instead of rotating between bit 0 and bit 2 of Port D, this part of the subroutine
O = will have to rotate between bit 4 and bit 6, testing bit 7 to see when it has gone ] 4
%‘a ,_5_" too far. Make the necessary changes to the subroutine and copy it in. We now
need to create a random time delay. ' _ i
i
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Random digression

‘One of the interesting aspects of this program will be the generation of the
random number to produce a time delay of random length. The most straight-
forward method for generating random numbers is to rely on some human input
and convert this into a number. For example, we could look at the number in
. T/CO when the ‘Ready’ button is pressed. T/CO0, if counting internally, will be
counting up and overflowing continuously, and so its value when the button is
pressed is likely to be random. Very often, however, we don’t have the Juxury of
a human input, and so we have to generate a string of random numbers. How is
this done? There are a large number of algorithms available for generating
random numbers, varying in complexity. We are restricted in the complexity of
the functions we can straightforwardly apply using AVR assembly language, but
fortunately one of the more simple algorithms relies purely on addition and
multiplication. The Linear Congruential Method developed by Lehmer in 1948!
has the following form:

]n-H = mOdm(aln + C)

This generates the next number in the sequence by multiplying the previous
number by a. adding c. and taking the result modulo m. mod_ (x) is equal to the
remainder left when you divide x by m. Conveniently. the result of every oper-
ation performed in an AVR program is effectively given in modulo 256. For
example. we add 20 to 250. The ‘real” answer is 270; however. the result given
1s 14, 14 is *270 modulo 256" or mod,;.(270). There are a number of restric-
tions on the choice of @ and ¢ in the above equation that maximize the random-
© ness of the sequence (see the reference for more info). Given that the quickest
algorithm is that with the smallest multiplier (a), we will choose a=5and ¢ = 1.
You also have to pick a ‘seed’ - the first number in the sequence (/;). You can
set this model up on a spreadsheet and examine its quasirandom properties.
First, you should notice that the randomness of the sequence does not appear
sensitive to the seed; there is therefore no need to pick a particular one. You will
also notice the sequence repeats itself every 256 numbers — this is an unfortu-
nate property of the algorithm. Picking a larger modulus will increase the repe-
tition period accordingly. We could use modulo 65 536 by using one of the
2-byte registers (X, Y or Z) and the adiw instruction. This would result in a
sequence that repeats only every 65 536 numbers! For our purposes with the
reaction tester, a period of 256 is quite acceptable.

To convert this random number into a random time we do the following. The
maximum time is 10 seconds, and the T/CO will overflow every 256 counts =
256/2400 = 0.066 second.. We therefore would like a counter with a value
roughly 61 and 183. You might notice the difference between these numbers is

! See reference on random numbers in Appendix 1.

.y
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rlxgtg far off 128 ( itis in fact 122). Our life is made a lot easier if the difference is
» 50 as the times needed are quoted only as approximate figures, we can use

a counter that goes from 60 to 188 which will perform adequately. To convert our

random n}xmber between 0 and 255 we first divide by two, then add 60.
Returning to the program, we will use register Random to hold the random

number. We need then to multiply this by f it to i i
oo ave need ply y five (add it to itself four times), and

EXERCISE 4.4 What six lines will generate the next random number?

EXERCISE 4.5 What three lines will co Y <Random int ntX, divi
: o . div
CountX by two, and then add 60. > coun, divide

We then need to reset the higher byte of the timer (TimeH), turn off the displays

EXERCISE4.6  Which six lines will reset TimeH. PortB and the interrupt flags?

There is a particular instruction for setting the master interrupt enable:

sei ; Sets the interrupt enable bit,

The rest of the program is.a loop which just tests the interrupt enable bit. and
loops pack to Start when it has been cleared. This is because after an Ext;emal
INTO Interrupt, the master interrupt bit will nor re-enable in'terrupts and upon-
returning the'program will loop back to Start. In contrast, after a T/CO relfted
Interrupt the interrupts will be re-enabled so the program will stay in the loop. -

EXERCISE 4.7 What three lines finish off the main body of the program?

Loolqng f irst'at the T/CO overflow interrupt handling routine (TInt), we see that
the first te§t 1s to see whether or not the LED (Pi;xD. 0) is on. If ‘it is off we
should be timing out the random time to see when to turn it on. If it is already
on we §hould be incrementing the higher byte of our timing registers (TimeHi
If the time exceeds the maximum that can be displayed on the ;cope we shoulé
move ‘-HI’ into the display registers and return without enabline int,errupts

. The T/CO is counting up 2400 times a second (with a regist:r coumino. the
hlghe.r byte as well). We need to convert this to milliseconds (i.e. sometahino
counting 1000 tirr§e§ a second). To do this we can muli{ply the 2-byte numbc?
by 5 and then dlvnqe by 12. Applying the reverse procedure to 999 (the
maximum response time) we get 2397 = 95D, It would be much easier if we

were testing only to see if the higher byte had reached a certain value (e.g. A0O). -

This is easy to do by resetting T/CO to 0xA2 when the LED is turned ap and

\
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then subtract the 0xA2 back off the final answer at the end of the day:

; tests LED
; jumps to different section if on

Tint: sbic PinD, 0
rimp TInt_LEDon

dec CountX H decrements random counter
breq PC+2 ; skips if clear
reti ; returns otherwise

; turns on LED when time passes
; initializes TCNTO to 0xA2
; to facilitate testing for max

sbi PortD, 0
1di temp, 0xA2
out TCNTO, temp

reti H
TInt_LEDon:
inc TimeH ; increments higher byte
cpi TimeH, 0x0A  ; tests for maximum time
breq PC+2 ; skips if the user is too slow
reti ;
Idi Hundreds, 13 ;-
1di Tens, 14 H
1di Ones, 1 s I
ret : returns without setting I-bit

The External INTO interrupt handling routine is more straightforward - we will
call it Extint. This also involves testing the LED first. If it isn’t on this means
the user has cheated by pressing the button before the LED has turned on. In
this case, we move numbers 10, 11 and 12 into Hundreds, Tens anq Ones
respectively in order to display ‘bAd’, and then return without re-enabling the
master interrupt bit. I the LED is on. the press is valid, and so we have 1o ‘hah
the T/CO and store the current time by moving T/CO0 into TimeL. It1s possxble.
however unlikely. that the T/CO overflowed just after the INTO interrupt
occurred. We therefore need to test the T/CO overflow interrupt flag. and incre-
ment TimeH if it is set. Then the total reaction time (split up over TimeL and
TimeH) needs to have 0xA2 subtracted from it (as this was artificially added).
It must then be multiplied by 5 and divided by 12.

EXERCISE 4.8 Which 12 lines test the LED at the start of ExtInt, test the LED,
jump to a section called Cheat if it isn’t on, and halt the T/CO and store the
current value, incrementing TimeH if necessary? O0xA2 should then be
subtracted from the total reaction time, and T/CO should be restarted at
CK/1024.

FXERCISE 4 9 Which four lines form the Chenat section?
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After subtracting OxA2 we need to multiply the time by 5. As the time is split

over two registers we need to use the ade to add a carry to the higher byte if and.
when there is a carry:

Idi Count4, 4 ; loads a counter with 4
mov  temp, TimeL  ; stores time in temp and tempH
mov tempH, TimeH ;

Times5: add temp, TimeL ; adds TimeL to itself
ade tempH, TimeH ; adds TimeH and Carry to itself
dec Count4 ; does this 4 times
brne  TimesS ;-

The product is now held over temp and tempH. We then divide the result by 12.
The simplest way to do this is to see how many times we can subtract 12 from
the total. '

EXERCISE 4.10  Challenge! What nine lines will first clear TimeL and TimeH,
and then enter a loop which divides the 2-byte number stored between temp and

tempH by 12. leaving the result in TimeL and TimeH. (To skip out of the loop
jump to the DigitConvert scction.) )

DigitConvert converts the 2-bvie number into a three-digit number (this is copied
from the frequency counter with the register names changed accordingly). Instead
of the ret instruction at the end of the section, writc rymp Start.

You will have to sct up all the registers (R0-R14) that hold the seven segment
codes in the Init section. Registers R10. R11, R12, R13 and R14 hold the codes
for a ‘b’, ‘A’, 'd". *-" and ‘H’ respectively. You can double check you’ve done
everything correctly by looking at Program K in Appendix J. It should be quite
fun to try this one out. Of course. the simplest way of using an AVR as a reac-
tion tester is ta get a friend to hold it between your fingers and drop it. and then
see how far down the chip you caught it!

Analogue comparator

Another useful feature on most of the AVRs is an analogue comparator (AC)
which compares the voltages on two pins (called AING and AIN1 = PBO and
PB1 on the 1200) and changes the state of a bit depending on which voltage is
greater. This is all controlled by the ACSR /O register, whose bit assignments
are shown in Figure 4.3. Ve

Bit 7 is simply an on/off switch for the AC. You should disable the AC inter-
rupt (clear bit 3) before disabling the AC otherwise ani interrupt might occur-
when you try to switch it off. Bits 0 and 1 dictate what triggers an AC interrupt
in terms of the AC result (i.e. interrupt when the AC result changes, when it

ricee nr when it falleh The ramainine hite arn ~alf avelapnadbany.
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ACSR - Analogue Comparator Control and Status Register

2 1 0
. Bitno. 7 6 5 4 3
4 Bitname ADC - ACO ACI ACIE - ACIS1 ACISO

—

00} Interrupt on Change

01| -

10|interrupt on Falling Edge

11|interrupt on Rising Edge

Analogue Comparator Interrupt Enable:
0: Disables Analogue Comparator Interrupt

1: Enables AC interrupt

Analogue Comparator Interrupt Flag:
0: Interrupt hasn't occurred
1: Interrupt has occurred

Analogue Comparator Result:
0: Voltage at AINO > Voltage at AIN1
1: Voltage at AINO < Voltage at AIN1

Analogue Comparator Disable:
0: Analogue Comparator On .
1: Analogue Comparator Off {lowers power consumption)

Figure 4.3

Program L: 4-bit analogue {o digital converter

© Analogue comparator

i ject is very much a case of doing what you can \yith what you
g::':n;::n};r(gf the mog advanced AVRs ha\fc full-blown IO-b{t analogue tt;
digital converters, and so with these the ability to ,create a 4-bit copv:;rter 1'-
clearly of limited value. However, many AVRs don’t benefit from.thls ux:a?n
being blessed with only a comparator, and in these cases the fqllowmg prog o
can be useful. The key to this project is using a summing amplifier to create

.

- o ki« o - P
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of 16 possible reference voltages. By running through these reference voltages

and comparing them with the input signal, we can determine the input voltage .
with 4-bit resolution and within four cycles of the loop. The circuit diagram is

shown in Figure 4.4, pay particular attention to how the summing amplifier

works. For more information on summing amplifiers, see the reference?. The
straightforward flowchart is shown in Fi gure 4.5,

PDO to PD3 control which reference voltage is being fed to the comparator,
as summarized in Table 4.3,

Table 4.3

0000 ov 1000 25V
0001 0312V 1001 2812V
0010 0.625 V 1010 3125V
0011 0937V 1011 3437V
0100 1.25V 1100 375V
0101 1.562 V 1101 4.062 V
0110 1.875 Vv 1110 4375V
0111 2,187V 1111 4.687 v

Write the Init scction. remembering to turn on the analogue comparator by
setting bit 7 of ACSR. Leave the AC interrupt off. At Start we first set up PortD
with 0b00001000. This sets the most significant bit of the voltage selector and
thus feeds 2.5 V into AINO. This is then compared with the input at AIN1. If the
input is higher than the reference, bit 5 of ACSR will be high, otherwise bit 5
will be low. If the input is higher than the reference, the answer is greater than
1000 and so we leave bit 3 of the reference high and set bit 2. If the input is
lower than the reference. the answer is less than 1000 and $0 we clear bit 3, and
then set bit 2.

EXERCISE 4.11  Write the five lines which set up PortD with the initial value
and then test the AC result. If the AC result is low, clear bit 3 of PortD. In either
case set bit 2 of PortD.

EXERCISE 4.12  Repeat the above for the remaining bits (eight more lines).

EXERCISE 4.13  Challenge! Write the four lines that transfer the resulting state
of PD0-3 to the output bits (PB4-7), and then loop bac}g,&o Start.

{4 —
| i 2 See references: Introducing Electronic Systems, M. W, Brimicombe (1997) Nelson Thornes.
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( Set'-up J

Start with 1000

Reference too
high?

YES

Clear bit and set next bit Set next bit

Y

Figure 4.5

10-bit analogue to digital conversion (ADC)

Other AVR models such as the Tiny15, 4433 and 8535 have a built-in 10-bit
A/D converter. This works in much the same way as the 4-bit converter we built
in the previous section, except it is all done for us automatically and internally.
The voltage on one of the analogue input channels is measured (with respect to
the voltage on a reference pin AREF), converted into a 10-bit binary number,
and stored over two 1/O registers called ADCL and ADCH (which stand for
ADC Result Lower byte and ADC Result Higher byte). There are two basic
modes of operation: Free Running and Singie Conversion. In ‘Free Running’ the
ADC repeatedly measures the input signal and constantly updates ADCL and
ADCH. In ‘Single Conversion® the user must Initiate every AD conversion
themselves.

For the 4433 and 8535, the pin being read is selected using the 1/0 register
called ADMUX ($07). The bit assignment is shown in Table 4.4, all other bits
are not used.

If you want to test a number of channels. you can change the ADMUX
register, and the channel will be changed immediately, or, if an AD conversion
I1s in progress, after the conversion completes. This me4ns you can scan through
channels in ‘Free Running’ mode more easily, as you can change the channel
during one conversion, and the next conversion will be on the new channel,

The rest of the ADC settings are held in the ADCSR (ADC Status Register),
I/O register $06. The bit assignments are shown in Figure 4.6. |

P
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Table 4.4

ADMUX bits 2,1,0 Analogue input

000

001
010
ot
100
101
110
111

Channel 0 (PAO)
Channel 1 (PA1)
Channel 2 (PA2)
Channel 3 (PA3)
Channel 4 (PA4)
Channel 5 (PAS)
Channel 6 (PAG)
Channel 7 (PA7)

ADCSR - ADC Status Register ($06)

Bit no.
Bit name

AN

Figure 4.6

ey

7

6 5 4 3 2 1 0

ADEN ADSC ADFR ADIF  ADIE ADPS2  ADPSt ADPSO

— |
‘ ADC Clock frequency

000 | CK/2

001 | CK/2

010 | CK/4

011| CK/8

100 | CK/16

101 | CK/32

110 | CK/64

111] CK/128

ADC Interrupt Enable:
0: Disables ADC Complete Interrupt
1: Enables ADC Complete Interrupt

ADC Interrupt Flag:
0: No ADC Complete Interrupt has occurred
1: The ADC Complete Interrupt has occurred

ADC Free Running Select:
0: Single Conversion mode
1: Free Running mode

ADC Start Conversion f/n “Single Conversion” Mode).
0: AD Conversion has finished
1: Starts a conversion

ADC Enable:
0: ADC Off {lowers power consumption)
1: ADC On
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Bits 0 to 2 control the frequency of the ADC clock. This controls how long
each conversion takes amd also the accuracy of the conversion. A clock between
50 kHz and 200 kHz is recommended for full, 10-bit, accuracy. Frequencies
above 200 kHz can be ~ ~<en if speed of conversion is more important than
accuracy. For example, @ trequency of 1 MHz gives 8-bit resolution, and 2 MHz
gives 6-bit resolution. The ADC complete interrupt occurs (if enabled) when an
ADC conversion has fimished. The other bits are straightforward.

The ADC on the TinykS is slightly more advanced, offering featurcs such as
internal reference voltages and differential conversion (i.e. measuring the
voltage difference between two pins). Moreover, in the case of the 4433 and
8535 the 10-bit ADC wesult is stored with the lower byte in ADCL and the
remaining two msb’s in ADCH. In the case of the Tiny15, you have the choice
between this arrangement, and storing the upper byte in ADCH and the
remaining two Isb’s in ADCL. These changes all take place in the ADMUX
register, shown in Figure 4.7. .

. Looking at bits 0 to 2 again, we see the option to look at the voltage differ-
ence between pins, namely ADC2 (PB3) and ADC3 (PB4). These inputs are put
through a differential amplifier, and then measured using the ADC. The differ-
ential amplifier can either have a gain of x1 or x20. You will notice that two of
the settings give the difference between ADC2 and itself! This is used for cali-
bration purposes, as thedifferential amplifier used in the difference setting will
have a small offset. By measuring this offset and subtracting from the answer of
your real difference measurement, you will improve the accuracy of your result.

Another handy featuze if you are interested in a high accuracy conversion is
to send the chip to slegp and perform an AD conversion whilst in sleep. This
helps eliminate noise fram the CPU (central processing unit) of the chip. An
ADC complete interrupt can then be used to wake up the chip from sleep. This
method is demonstrated in Example 4.1.

Example 4.1

Idi temp, 0b18001011 ; enabies ADC, Single Conversion
out ADCSR, temp ; enables AD Complete Interrupt
I1di temp, 0b0&101000 ; enables sleep, a
out MCUCR ; ‘AD Low Noise mode’ -
sleep 5 goes to sleep — this automatically

3 starts AD Conversion

When the AD conversiom completes, the AD conversion interrupt routine will
be called (address $008 n the Tiny15, and address $OOE on the 4433 or 8535),
when the program retums from the routine it will carry on from the line after
the sleep instruction. :
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ADMUX - ADC Multiplexer ($07)

Bit no. 7 6 5 4 3 2 1 0
Bit name REFS1 REFSO ADLAR - - MUX2  MUX1 MUX0

| ‘ —
AD Channel Select
000} ADCOC (PB5)

001| ADC1 (PB2)

010} ADC2 (PB3)

011|{ADC3 (PB4)

100{ ADC2 - ADC2 x1

101 ADCZ - ADC2 x20

110 ADC2 - ADC3 x1

111 ADC2 - ADC3 x20

ADC Left Adjust Result:
0: Lower byte of result in ADCL, 2 msb’s in ADCH
1: Higher byte of result in ADCL, 2 Isb’s in ADCL

00| Vce is reference voltage

0

AREF (PBO) is reference voltage

10| iInternal reference (2.56V)

Internal reference (2.56V) with smoothing capacitor at PBO

-
/

Figure 4.

Srogram M: voltage inverter

& Analogue 1o digital conversion
2 Digital to analogue conversion

~ We can use ADCs to make digital to analogue converters. The trick to this is to
. use the output to charge up a capacitor until it reaches the required output
. voltage. The AVR’s output then goes open circuit (turns itself into an input). The
| capacitor will then slowly discharge through the input impedance of whatever
is reading it, lowering the analogue output. Meanwhile another input is moni-
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toring the voltage of the analogue output. If it falls below a certain mark, the
AVR’s output is turned on again to top up the analogue output. To lower the
analogue voltage, the AVR autput is cleared to 0 to discharge the capacitor
quickly. Figure 4.8 illustrates this technique, though the jaggedness of the final
output is exaggerated.

R
PBO ——{ " +—e———e— output
. {———0
PB2 J C
L ]
APBO
—J, E.f I
A output oo
:f:::"/ﬁf:\::.'/:.:m

»

Figure 4.8

R should be made smali emough to allow quick response time, and C high
enough to give a smooth ouput. We will demonstrate this with a project that
takes an input, /, between ¢ amd 5 V, and outputs (5 - ). For example, 2 V in
becomes 3 V out. The circuit dtagram is shown in Figure 4.9, and the flowchart
in Figure 4.10.

In the Init section, we will Bave to enable A/D conversion, and select ADCO
to start with. We would like maximum accuracy, and so require a clock speed

* that is less than 200 kHz. We will be using the internal as€illator which runs at

1.6 MHz. This means that an ADC clock of CK/8 (200 kHz) will be acceptable.

. The ADC should be single made, and set the ‘Left Adjust’ bit so that the upper -
i byte of the ADC result is in ADCH and the two Isbs in ADCL. I-'mal]y, let Ve

; be the reference voltage, and start an AD conversxon

S i
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Measure voltage on input

5 - input = desired output

Measure voltage on output

Output too
high?

QOutput too
low?
Make PBO 5V
NO
Make PBO OV Make PBO input
] ]
Figure 4.10 s

EXERCISE 4.14 What numbers should be moved into ADCSR and ADMUX in
the Init section?

Write the whole of the Init section. Initially make PBO an output. PB5 and PB2
should be inputs. Once the AVR reaches Start, the ADCO channel should b¢

selected (by clearing ADMUX, bit 0), and an A/D conversion should be started
(by setting ADCSR, bit 6). When the A/D conversion is over, this bit will be
cleared, so we can test this bit and wait for it to set. :

EXERCISE 4.15 What four instructions start an A/D conversion on ADCO and
wait for it to complete?

Once the conversion is complete, the input voltage will be stored in registers
ADCL and ADCH. Thkere is no need for the full 10-bit accuracy, and so we will
simply use 8 bits. With Left Adjust enabled, this simply involves reading the
number from ADCH. To perform the function (5 — input voltage) we simply
invert the result (ones become zeros and vice versa). Invert the results using the
com instruction, and store the result in a working register called Desired (this
represents the voltage we want on the output).

EAERCISE 4.16  Which six instructions store and invert the measurement of the
input voltage, change the input channel to select ADCI, and start a new conver-
sion? It should also wait in a loop until the current conversion finishes.

Now the voltage on the output has been read and can be compared with the
desired voltage. Save the measured voltage from ADCH into a working register
called Actual (the actmal voltage on the output). Then use the compare (ep) and
branch-if-lower (bris} instructions to jump to sections called TooHigh (the
actual output is higherthan the desired output), or TooLow (the actual output is
less than the desired output).

EXERCISE 4.17 Whih seven lines perform these tests and branch out as
required? If the actusl and desired voltages are equal, PBO should be made an
input (by clearing DBRB, bit 0) and then the program should jump back to
Start.

The TooHigh section needs to lower the output, and so PBO is made an output
(by setting DDRB, b 6) and then made low (0V) to discharge the capacitor and
lower the output. TesLow needs to raise the output, and so PBO is made an
output and made higk (5V) to charge up the capacitor.

EXERCISE 4.18 Write the six lines that make up the TooHigh and TooLow
sections. The end of beoth sections should jump back to Start.

That wraps up Program M. You may want to experiment a little and make the

device perform more complicated functions on the input, or perhaps on two

inputs. Perhaps you tan make some form of audio mixer by sprnming two input

channels, or subtract the left and right channels of an audio sigral to get a

‘pseudo-surround seand’ output. As you can see, there are a number of inter-
/

rd

o



16 Intermediate operations

sting projects that can be based around the above, and all on the little Tinyl5
1p!

EPROM

1 addition to the RAM and program memory that we have already seen, many
VRs have an additional memory store which combines the flexibility of RAM,
ith the permanence of program memory. Unlike the RAM, the EEPROM will
zep its values when power is removed and unlike the program memory, the
EPROM can be read and written to while the program runs. EEPROM stands
r Electrically Erasable Read-Only Memory There are three 1/O registers
ssociated with the EEPROM:

EEAR ~ The register which holds the address being written to/read from the
EEPROM

EEDR - The register which holds the data to be written to/read from the
EEPROM

EECR - The register which holds controls the EEPROM

— Set bit 0 of EECR to read from the EEPROM

- Set bit 1 of EECR to write to thc EEPROM

ne 1200 has 64 bytes of EEPROM. though other AVRs can have much more
1p to 512 bytes). The write operation takes a certain amount of time. To wait
ntil the writing process 1s over. test bit | of EECR (the one you set to start the
rrite) — when the writing finishes the bit is cleared automatically.

xample 4.2 To write the number 45 to EEPROM address 0x30, we would
rrite the following:

1di temp, 0x30 ; sets up address to write to
out EEAR, temp ;

idi temp, 45 ; sets up data to write
out EEDR, temp ;
sbi EECR,1 ; initiates write

LEWait: sbhic EECR. 1
rimp EEWaijt

; waits for write to finish
; loops until EECR, 1 is cleared

ixample 4.3 To read address 0x14 of the EEPROM we write the following.
At the end of the segment of code, the data held in address 0x14 will be in
{EDR.

: 1di temp, 0x14 ; sets up address to read
I out EEAR, temp
sbi EECR, 0 ; initiates read
; data now held in EEDR

i
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EXERCISE 4.19  Challenge! Write a routine which sets up addresses 0x00 to
0xOF of the EEPROM to be an ASCII look-up table. This means address ‘n” of
the EEPROM holds the ASCII code for the ‘n’ character (i.e. the code for
numbers (-9, A, B, C, D, E and F). The ASCII codes for the relevant characters
are given in Appendix G. The routine should be /4 lines long.

There are two ways to program the EEPROM when you are programming your
chip. In AVR Studio, you can go to View — New Memory View (Alt + 4) and
select EEPROM. This will give you a window with EEPROM memory loca-
tions. Simply type in the values you wish to program into the EEPROM, and
when you select the programmer (e.g. STK500). select ‘Program EEPROM’
and choose ‘Current Simulator/Emulator Memory". This will load the contents
of the EEPROM window onto the EEPROM of the chip. An easier way is to
specify what you want to write to the EEPROM in your program itself. Use the
.eseg directive (EEPROM segment) to define EEPROM memory. What you
write after that wili be written to the EEPROM. If you want to write normal
code after this, you must write .cseg (code segment).

Example 4.4

.eseg ; writes what follows to the EEPROM
.db  0x04, 0x06, 0x07 :
.db  0x50 :
.cseg ; writes what follows to the program
;  memory
ldi temp, 45 ;

The .db directive stores the byte(s) which follow to memory. This particular code
writes 0x04, 0x06, 0x07 and 0x50 to memory locations 00~03 in the EEPROM.
Note that this is nor a way to change the EEPROM during the running of the
programming — it is only a way to tell the programmer what to write to the
EEPROM when vou are programming the chip. Directives such as .org can be used
to select specific addresses in the EEPROM. On the 1200, which doesn’t support
the Ipm instruction, it is a better use of resources to store the seven segment look-
up table in the EEPROM, than in registers RO-R 10, as previously done.

16-bit timer/counter 1

Some AVRs, such as the 2313, have a separate 16-bit tﬁ;'xer/counter in addition
to the 8-bit TCNTO. This is called Timer/Counter 1, and is quite useful as the

need for markers and counters to time natural time lengths becomés greatly,

reduced. The number in Timer/Counter 1 (T/C1) is spread over two 1/O regis-
ters: TCNTIH (higher byte) and TCNTIL (lower byte). The T/Cl can be

x.
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rescaled separately to T/CO (i.e. it can be made to count at a different speed),
nd can also be made a counter of signals on its own input pin: T1 (as opposed
o TO which is the T/CO counting pin). If the T/C1 is counting up at 2400 Hz,
he 16 bits allow us to time up to 27 seconds without the need for any further
.ounters. One very important point to note with this 2-byte timer/counter is that
vhen you read T/C1, the 2 bytes must be read af the same time, otherwise there
s a chance that in between storing the lower and higher bytes, the lower byte
werflows, incrementing the higher byte, which lead to a large error in the stored
mswer. In order to do this you must therefore read the lower byvte first. When
sou read in the TCNT1L, the number in TCNTIH is at the same time auto-
natically stored in an internal TEMP register on board the AVR. When vou then
ry toread in TCNT1H, the value read is taken from the TEMP register. and not
rom TCNT1H. Note that the internal TEMP register is completely separate to
‘he working register R16 which we often call temp.

Example 4.5 Read Timer/Counter 1 into two working registers, TimeL and
,..
TimeH.

Value in T/C1

0x28FF  in  TimeL, TCNTIL ; stores FF in TimeL. and stores 0x28
; into the internal TEMP reg.
0x2900 in TimeH, TCNT1H ; copies TEMP into TimeH

Therefore, even if T/C1 changes from 0x28FF to 0x2900 in between reading the
bytes, the numbers written to TimeL and TimeH are still 0x28 and 0xFF, and
not 0x28 and 0x00.

Similarly, when writing a number to both the higher and lower registers yvou
must write to the higher bvte first. When you try to write a number to
TCNTI1H, the AVR stores the byte in the internal TEMP register and then,
when vou write the lower byte, the AVR writes both bytes ar the same time.

Example 4.6 Write 0x28F7 to the Timer/Counter 1.

1di TimeL, 0x28 ;
idi TimeH OxF7 3
out TCNTI1H, TimeH ; writes 0x28 into internal TEMP reg.

out TCNTI1L, TimeL ' ; writes O0xF7 to TCNT1L and 0x28 into
;  TCNTI1H at the same time

' The T/C1 has some other 2-byte registers associated with it, such as ICR1H, L
i and OCRI1AH, L, and they must be written to and read from in the same way

as TCNT1H, L. The functions of these registers are discussed in the next two
 sections.
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Input capture

Let’s say, for example, that we wish to measure the time until an event occurs

on a certain pin (as we had to do with the frequency counter project). We could ~

just test the pin and then read the T/C1 as we did before, but in order to simplify
the program and free up the processor on the chip, we can use a handy feature
that captures the value in T/CI for us. The input capture feature automatically
stores the value in T/C1 into two I/O registers: ICR1H (Input Capture Register
for Timer/Counter 1, Higher byte) and ICRIL (Lower byte) when an event
occurs on the ICP (Input Capture Pin), which is PD6 on the 2313. This event
can be a rising or falling edge. The input capture feature is controlled by an 1/0
register called TCCR1B (one of the two Timer Counter 1 Control Registers) —
the other control register for T/C1 is called TCCR1A and will be discussed in
the next section.

TCCR1B - Timer Counter 1 Control Register B (S2E)

Bit no. 7 6 5 4 3 2 1 0
Bitname ICNC1 ICES1 - - CTC1 CSi12 CS11 CS10

]
f_—-]

000 |STOP:! T/C1 is stopped

ADC Channel Select

001 |T/C1 counts at the clock speed (CK)

010|T/C1 counts at CK/8

011|T/C1 counts at CK/64

100 | T/C1 counts at CK/256

101 |T/C1 counts at CK/1024

110|T/C1 counts on falling edge of T1 pin

111 {T/C1 counts on rising edge of T1 pin

Clear Timer/Counter1 on Compare Match:
0: Doesn’t reset T/C1 on Compare Match
1: T/C1 is reset to $0000 on Compare Match

Input Capture1 Edge Select:
0: Falling edge on ICP triggers T/C1 capture
1: Rising edge on ICP triggers T/C1 capture

Input Capture1 Noise Canceller (4CKs): >
0: Noise Canceller disabled N
1: Voltage change on ICP must last at least 4 clock cycles

Figure 4.11
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Bit 7 can be used to make the feature more robust to noise on the' ICPlzn;.nlg
this feature is enabled, the voltage must rise from logic 0 to 1, fo; ex;rgplo;ic :
stay at logic 1 for at least four clock cycles: If the vo{tage. dro;(;js ac UlitChcand
before the four clock cycles have passc?d, tttle sg;ggasli (1:] ;Eiit:t V;1isuab: less,than
there is no input capture. If you are trying to read sig : :

es, you will have to disable this noise cgncglhlng feature .(c ear
tfglen;)(i:tl; cé(itc gc:elierz to the ourput compare function which is m}trc?chliuce;aci1 1inntrlllet
next section. There is an input capture interrupt to let :E‘lino;thw enb]e bi]t:)is
capture has occurred. This calls address $003 (on the 2313). The ena

bit 3 of TIMSK.

Example 4.7 Input capturing could be usec_i‘in a speedome.ter o? tz:] eb::/giel.
where a magnet would pass by the sensor with every rf\'oluFlon g f " eaCh.
The speed of the bike could be deduced as a fu.nct\on of the time e;\{»e; r each
revolution. The magnetic sensor could be attached to thf: ICP pm.,,\\ ic oud
g0 high every time the magnet passes over t.he sensor. We wogld W z;n}t] toC }Z oo
0 mé-asure times up to about 1 second. which means prf:SSil]l:]g of the ,,l

would be ideal. You may wish to remind yourself of the _r.al_? m;errluplt);fi\f)r
table in Appendix E. The skeleton of a speedometer program is shown :

j Init ; address $000
:.;?P ; $001 — not using INTO interrupt
reti ; $002 - not using INTI interrupt
IC_Int: ; $003 — the Input Capture interrupt
o in temp, ICRL ; stores captured value in working
in tempH, ICRH ; registers

sub temp, PrevL  ; finds different between old and new
sbe tempH, PrevH ; values

mov  PrevL, ICRL | stores new values

mov PrevH, ICRH ; o -
rcall  DigConvert  ; converts two-byte time into digits
reti ;

Display: etc. ; left for you to write

ret
DigConvert: etc. ; left for you to write
ret
Init: idi temp, 0b11000100 ; enables noise canceller

out TCCRI1B, temp ; T/C1 counts at CK/256
1di temp, 0b00001000  ; enables TC interrupt
out TIMSK, temp 3

i S—————
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sei ; enables global interrupt
etc. ; left for you to write
Start: rcall  Display ; keeps updating the dispvlays

rjmp Start ; Joops

The display and digit-convert subroutines are not included, but it is expected
that you could write them based on the similar display routines in previous
example projects. Note that the DigConvert subroutine should convert the
number held over temp and tempH (i.e. the difference between the two times)
into the digits to be displayed. The remainder of the Init section should also be
completed — this sets up the inputs and outputs. Note that even though we are
not using the interrupts that point to addresses $001 and $002, we still need
instructions for those addresses. We could Just use nop (no operation. i.e. do
nothing), but reti is safer. The idea is that if by some unforeseeable error an
INTO interrupt is triggered. the program will simply return. and no damage will

be done. This is a basic example of defensive programming — i.e. expect the
unexpected. ’

Output compare

In almost any appiication of the timer/counters, vou are testing to see if the
timer/counter has reached a certain value. Fortunately, all ~chips with a
‘Timer/Counter 1" have a built-in feature which does this automatically. We can
ask the AVR to continually. compare the value in T/C] with a certain 16-bit
value. When T/CI is equal to this value, an interrupt can occur, or we can
change the state of one of the output pins, and we can also make the T/C] reset
(see bit 3 of the TCCR1B register shown on page 119). On the 2313, for
example, the value that is to be compared with T/C] is stored over two 1/O
registers: OCR1AH and OCR1AL (which stand for Output Compare Register
A for T/C1, Higher and Lower bytes respectively). The ‘A" is to distinguish

‘them from a second set of output compare registers (labelled ‘B’) that are found

in other chips such as the 8515. The 8513. for example. can therefore constantly
compare T/C1 with rwo different values. If we wish to use the output compare
feature we will need to enable the Output Compare Interrupt, which occurs
when TCNTIH = OCRI1AH and TCNTIL = OCRIAL. The enable bit for
this interrupt is in TIMSK, bit 6. The interrupt address varies between different
models. but for the 2313 the output compare interrupt calls address $004. We

will find the output compare feature very useful in the next project, and in the
: mext chapter we will see how it can be used for PWM (pulse width modulation).

| EXERCISE 4.20 Challenge! If we want an interrupt to occur every second, and

We are using a 4 MHz oscillator, suggest numbers that should be moved into the
following registers: TCCRI1B, TIMSK, OCR1AH, OCRIAL. -
! ; % .
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Major program N: melody maker

e EEPROM
e Output compare
e Sounds

By driving a speaker at a certain frequency, we can use the AVR to create
musical notes. In fact, using a square wave actually creates a more natural sound
than a sine wave input. This end-of-chapter project will allow the user to
program short melodies into the EEPROM of the chip, and then play them .bac_k
thr(;ugh a speaker. The relation between some musical notes and frequencies is
shown in Table 4.5.

Table 4.5
C C# D D# E F
128 Hz {136 Hz | 144 Hz | 152 Hz 161 Hz 171 Hz
F# G G# A | A# B
181 Hz |192Hz {203 Hz | 215Hz | 228 Hz | 242Hz

The values for the next highest octave can be obtained by doubling the
frequency. For example, the next ‘C’ will be at 256 Hz. Assu'mmg we use four
octaves, we can encode the note as the letter (which needs'4 bits) and the octave
‘number (which needs 2 bits). The length of the note will be encoded in the
remaining 2 bits. Each note in the melody will therefore take up 1 byte of
EEPROM. The 2313 has 128 bytes of EEPROM, which means we can store a
128-note melody. If longer tunes are required, a chip with more EEPF_\OM can
be used instead,'such as the 8515. The note will be encoded as shown in Figure
4.12.

Bit no 7 6 5 4 3 2 1 0
Length Octave Letter
(e.g. C#)
Figure 4.12

L)
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The circuit will simply consist of a speaker attached to PBO (and the usual
crystal oscillator on XTAL] and XTAL2). The AVR can drive a speaker on its
own, as long it has a relatively high impedance (e.g. 64 ohm). If you are using
a lower impedance speaker (e.g- 8 ohm) you might be better off driving it with
a transistor. The flowchart is shown in Figure 4.13; notice how the entire

program is interrupt oriented and the main body of the program will simply be
a loop.

Main Body of Program

=
]

T/CO Overfiow Interrupt T/C1 Output Compare

Interrupt

Toggle State of PB0

! Return

1
j Reset EEPROM
address to O

Decrement Length reg.

Is Length = 0?

Get next note

Is next note
= 0C?

Translate note into )
frequency and length

A ‘note letter’ value between 0x0 and 0xB will correspond to a note berween
‘C’ and ‘B’. The value 0xC in the ‘note Jetter’ part of the EEPROM byte will
indicate the end of the melody and cause the chip to return to the start of the
melody and repeat it over again. You may want to add extra functionality by
including 0xD in the ‘note letter part of the byte, meaning end the melody and
do not loop back (i.e. just wait until a manual reset), but this is not included in
my version of the program. In the Init section, configure the inputs and outputs,
the timing registers, and the stack pointer register (SPL). Enable the T/CO
Overflow and T/C1 Output Compare interrupts. The T/C1-Will be used to create
a signal of a certain frequency on the speaker pin, whilst T/CO will be used to
regulate the length of the note. Therefore, set up T/CO to count at CK/ 1024, and
T/C1 to count at CK. In the Init section you will also have to set up the first note;
call a subroutine Read_EEPROM to do this, we will write the subroutine later.

" .

Figure 4.13
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At Start: you need only write one instruction which loops back. to Start.
Nhenever the T/C1 Output Compare interrupt occurs the output w1.11 hgve to
:hange state. This simply invoives reading in PortB into temp, inverting it, and
hen outputting it back into PortB.

IXERCISE 4.21 Write the four lines which make up the T/C1 Optput Compare
nterrupt section. Include a link to this section at address $004 in the program

nemory.

All that remains is the T/CO Overflow interrupt section. Length will be a
working register we use to keep track of the length of the note. AF the start of
he section, decrement Length. If it isn’t zero just return; if it is, skip the return
nstruction and carry on. If sufficient time has passed, we need to change the
10te, but first there must be a short pause. This pause allows us to repeat the
same note twice without making it sound like a single note played for twice as
ong. An easy way to insert a pause is simply to wait for the T/CO Overflow
antc;rmpt flag to go high again. If it is, skip out of the loop, reset the flag qnd
:aove on to the section that reads the next note. Call this section
Read_EEPROM.

EXERCISE 4.22  Write the eighr lines at the start of the T/CO Overflow interrupt
section. Include a link to this section at address $006.

The Read_EEPROM section copies the number in a working register call;d
address into EEAR. Read the EEPROM into the ZL register, and mask bits
4-7, selecting the ‘note letter’ part of the byte. Then compare ZIT with the
nurmber 12 (0xC); if it is equal, jump to a section called Reset. If it isn’t equgl
test to see if it is less than 12 (brlo). If it isn’t less (i.e. it is greater than 12) 1t
1s an invalid note letter, and so ZL should be reset to 0x0, for want of a better
note. If it is less than 12, skip that instruction.

EXERCISE 4.23  Write the first eight lines of the Read_EEPROM section.

We will be using ZL to read values from a look-up table in the program memory
(using the lpm ~insn’uction). As you may remember, lpm uses the byte addr.-ess
of the program memory. rather than the word address, so we peed to multiply
ZL by two (using the Isl instruction). The look-up table will start at wc‘n?d
address 013. We can ensure this using the .org directive in AVR Studio. This
says ‘Let the next instruction be placed at address ...". Our look-up tz.able starts
2s shown below (.dw is the directive which puts the word or words which follow
in the program memory). :

i

!.org 13

.dw  0x7A12 - ; frequency for C  (word address 013)
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.dw 0x7338
etc.

; frequency for C# (word address 014)

We must therefore add 26 to ZL to correctly address the look-up table. Use Ipm
to read the lower byte, and move the result from RO into a working register

called NoteL. Then increment ZL and do the same, moving the result into
NoteH.

EXERCISE 4.24  What seven lines perform this task?

We will need to perform some basic maths to derive the values for the look-up
table. Taking the frequencies of the lowest octave to be played. shown in Table
4.5, and dividing by 4 000 000 (the oscillator frequency) by these values, we get
a set of numbers indicating the numbers with which we wish to compare T/C1.
To get higher octaves we will simply divide these values by two. My values are
shown in the full version of the program in Appendix J; you may wish to check
them, or else you can simply copy them.

To get the correct octave we again copy EEDR into temp, swap the nibbles.
and then mask bits 2-7. leaving us with the 2 bits we are interested in — those
that choose the octave. Label the next line GetOctave. First test if the result of
the AND operation just performed is 0: if it is we can Jjust move on to the next
section — GetLength. If it isn’t 0. we will divide the number spread over NoteH
and NoteL by two. decrement temp, and then loop back to GetOctave.

EXERCISE 4.25  Write the eight lines that use bits 4 and 5 of the EEPROM byte
to alter the frequency according to a specified octave. :

NoteH and NoteL are now ready to be moved into OCR1AH and OCRIAL,
but remember to write the higher byte Jirst. We then read the length, using a
similar method to GetOctave. Again read the EEDR into temp. mask bits 5-0,
swap the nibbles, and rotate once to the right. This places the relevant bits in bits
1 and 2 of temp. This means the number in temp is 0, 2, 4 or 6. This is almost
Wwhat we want. and by adding 2 to temp we get.2, 4, 6 or 8. This should be
moved into Length.

EXERCISE 4.26 What nine lines make up the GetLength section and return
from the subroutine, enabling interrupts.

The program is now finished. By programming different values into the
EEPROM when you program the chip, it can be made to’produce any tune. You
may find a spreadsheet useful in converting notes, octaves and lengths into the
hex number which represents them. You may also want to look into ways to
input bytes to the EEPROM more easily. For example, you could use an array
of push buttons in a keyboard arrangement, strobing them to lessen the number

Ld
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of inputs needed, to input the melody. Another method might involve a seven
segment display to display the note, with a series of buttons to scroll Fhrpugh
the memory and change the note — this would require less skill as a pianist to
enter the tune!

5
Advanced operations

PWM - pulse width modulation

In this section we will see how the output compare function can be used to
create an analogue output — a simplification of the method used in the voltage
inverter project. Our aim is to create a square wave output whose mark-space
ratio we can change. The mark—space ratio is the duration of the ‘logic 1" part
of the wave divided by the duration of the ‘logic 0’ part of the wave. By control-
ling this ratio. we can control the output voltage. which is effectively an average
of the square wave output. as shown in Figure 5.1. When using this output, you
may need to add a resistor/capacitor arrangement similar to that used in the
voltage inverter project. depending on the application.

Ay

m/s =4

Figure 5.1

The output compare function is used to create automatic PWM, with 8-, 9-,
or 10-bit resolution. By placing T/C1 in 8-bit PWM mode, for example, we
force T/C1 into a mode whereby it counts up to OxFF, and then counts back
down to 0x00, and then repeats. We then set a threshold by moving a certain
number into the output compare registers. When T/C] reaches this value when
counting up, it will set the OC1 output pin (PB3 on the 2313). When T/C1
reaches the value when counting back down it will ciéar the OC1 output pin.
This creates 8-bit PWM, as illustrated in Fi gure 5.2. .

If in 9-bit PWM mode, T/C1 will count up to 0x1FF before counting back
down, giving an extra bit of resolution. Similarly, in 10-bit PWM mode, T/C1
will count up to 0x3FF and back. You are also able to invert the PWM output so

-
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SNV

TCNT1L

OC1 pin

Figure 5.2

that the OC1 is cleared when T/C1 passes the threshold whilst counting up, and
OC1 is set when T/C1 passes the threshold whilst counting down. The 1/0
register TCCR1A controis the PWM settings. the bit assignments are shown in
Figure 5.3.

First, you will notice that you have the option. when not in PWM mode. to
alter the state of the OC] pin whenever Qutput Compare interrupt occurs. We
could use this in the melody maker project to toggle the speaker output auto-
matically, if we connected the speaker to OC1. You may also be wondering what
happens to the T/C1 Overflow interrupt when in PWM mode (as in this case the
T/C1 clearly never overflows). When in PWM mode. the T/C1 Overflow inter-
rupt occurs every time T/CI starts counting from 0xC000. Furthermore, if
PWM is enabled, the OC1 is treated as an output, regardless of the state of the
corresponding bit in the DDRXx register.

There is another feature of the PWM mode which comes into effect when-
ever you try to change the output mark-space ratio. You would do this by
changing the OCR1AH and OCRIAL registers, but unless you change them
at precisely the moment at which T/C1 is at its maximum (e.g. Ox1FF for 9-
bit PWM), you run the risk of a glitch appearing in vour output. This glitch
would take the form of a pulse whose width was in between the old and new
widths. In cases where you are trying to send information encoded in the
length of the pulses, this would clearly be damaging. as you would send some
ngrbage every time you changed the pulse width. Thankfully, in PWM mode,
when you try to change OCR1AH and OCRI1AL. their new values are stored

?“ a temporary location, and they are properly updated only when T/C1 is at
1ts maximum, :
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TCCR1A - Timer/Counter 1 Control Register (S2F)
Bit no. 7 6 5 4 3 2 1 0
Bit name COMi1A1 COMi1A0 - - - - PWM11 PWM10

N

00 |PWM mode disabled

01 |8-bit PWM enabled

10 |9-bit PWM enabled

11 {10-bit PWM enabled

When in PWM mode...

00| Do nothing to OC1 pin

01} Do nothing to OC1 pin

10| Clear OC1 when counting up, set OC1 when counting down

11| Set OC1 when counting up, clear OC1 when counting down

When not in PWM mode...

00} Do nothing to OC1 pin

01| Toggle OC1 when Output Compare interrupt occurs

10 Clear OC1 when Output Compare interrupt occurs

11] Set OC1 when Output Compare interrupt occurs

Figure 5.3

UART

‘UART” is an Egyptian term that means ‘the Artist’s Quarter’ — a place of bifur-
cation or division. However, UART also stands for Universal Asynchronous
Receiver and Transmitter, and is a standardized method of sharing data with
other devices. The UART module found on some AVR models (such as the
2313, 4433 and 8515) refers to the latter. UART invo]veysending 8- or 9-bit
packets of data (normally a byte, or a byte plus a parity bit). This 8- or 9-bit
packet is called a character. A parity bit is an extra bit sent.along with the data
byte that helps with the error checking. If there are an odd number of ones in
the data byte (e.g. 0b00110100), the parity bit will be 1, if there are an even

F
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number (e.g. 0b00110011), the parity bit will be 0. This way, if a bit error occurs
somewhere between sending the byte and receiving it, the parity bit will not
match the data byte, the receiver will know that something has gone wrong, and
it can ask for the byte to be resent. If rwo bit errors occur in one byte, the parity
bit will be correct, but the probability of two bit errors occurring is often so
small in real applications that this can be overlooked.

EXERCISE 5.1  Challenge! Write a short piece of code that takes the number in
a register (e.g. temp), and works out the state of the parity bit for that register.

For transmission, the UART module takes the input character (8 or 9 bits), adds
a start bit (a zero) at the front, and a srop bir (a one) to the end, to create a 10-
or 11-bit sequence. This is then moved into a shift register which rotates the bits
on to the TXD (transmission) pin. for example pin PD1on the 2313. An example
is shown in Figure 5.4, and the speed at which the bits are moved on to the pin
is dictated by the baud rare (number of bits per second) which can be
controlled.

ovte to be sent  0b00101101

\

1001011010

=

shift register

TXD pin

Voltage on 4
TXD
- A
time
7 ] 1 7 (4] 7 o /] |
Start Bit Stop Bit
Figure 5.4

The UART module at the receiving end will be constantly checking the data
line (connected to the RXD pin), which will normaliy be high. The receiver can
actually sample the data line at /6 times the baud rate, i.e. it can make 16
- samples per bit. If it detects that the RXD pin goes low (i.e. a potential szart bit)
* it waits for six samples and then makes three more samples. These should be
- samples 8, 9 and 10 out of the 16 for any given bit — i.e. it is sampling at the
| middle of the bit, allowing for slow rise and fall times on the signal. If it detects
that the RXD pin is still low, i.e. this is definitely a start bit, it carries on and

'i device:
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reads the whole byte. If the RXD is no longer low, it decides the first sample
must have been noise and carries on waiting for a genuine character. If the
receiver has decided that this is a genuine character, it will sample each bit three
times at the middle of its pattern. If the values of the three samples taken on the
same bit are not all identical, the receiver takes the majority value. Finally, when
the receiver samples what it thinks should be the stop bit, it must read a one (on
at least two of the three samples) to declare the character properly read. If it
doesn’t read a stop bit when it expects to, it declares the character badly framed
and registers a framing error. You should check to see if a framing error has
occurred before using the value you have just read into the chip.

Fortunately. all this is done for us by the UART module on the AVR chip. The
UART module also brings with it four I/O registers:

UDR (UART Data Register, $CC) — Bits 0 to 7 of the data to be sent. or data
just received

UCR (UART Control Register, S0A) — Controls settings of the UART, and
contains bit 8

USR (UART Status Register, S0B) — Displays status of parts of UART (e.g.
interrupt flags)

UBRR (UART Baud Rate Register. S09) — Sets the speed of the UART data
transfer

The bit assignments for registers UCR and USR are shown in Figures 5.5 and
5.6 respectively.

Finally, UBRR is used to control the rate of the data transfer. Clearly, this
must be the same for both the transmitting device and the receiving device. This
baud rate is given by the following formula:

CK
16 x (UBRR + 1)

Baud rate =

For example, if we are using a 4 MHz clock, and the number in UBRR is 25,
the baud rate will be about 9615. There are a number of standard values for
baud rates: 2400. 4800. 9600 etc.. which it can be advisable to stick to, to allow
compatibility of your device with others. For this reason, oscillator frequencies
such as 4 MHz are not very good for UART applications, as it is impossible to
choose these standard values of baud rates (try UBRR = 26 in the above). Much
better values include 1.8432 MHz, 2.4576 MHz, 3.6864 MHz, 4.608 MHz,
7.3728 MHz, and 9.216 MHz. For the higher frequencies, make sure the AVR
model you have chosen can take such a clock frequency.faking 3.6864 MHz as
an example, we can see that UBRR = 23 leads to a baud rate of exactly 9600.

Example 5.1 Send the value in the working register Identity to another UART

— e ————— e

3
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UCR - UART Control Register (S0A)

Bit no. 7 6 5 4 3 7 2 1 0
Bitname RXCIE TXCIE UDRIE RXEN TXEN CHRS RXB8 TXBS8

Transmit Data Bit 8:
In 8-bit mode, this is the
ninth bit sent (bit 8)

Receive Data Bit 8:
In 9-bit mode, this is the
ninth bit received (bit 8)

9 Bit Characters:
0: 8-bit data characters (plus start/stop)
1: 9-bit data characters {plus start/stop)

Transmitter Enable:

0: Disables Transmitter (but waits tor current
transmission to.end)

1: Enables Transmitter

Receiver Enable:
0: Disabies Receiver (and its corresponding flags)
1: Enables Receiver

UART Data Register Empty Interrupt Enabile:
0: UART Data Empty interrupt disabled
1: UART Data Empty interrupt enables (see bit 5 of USR)

Transmission Complete Interrupt Enable:
0: TX Complete interrupt disabled
1: TX Complete interrupt enabled

Reception Complete Interrupt Enable:
0: RX Complete interrupt disabled
1: RX Complete interrupt enabled

Figure 5.5

Idi temp, 0b00001000 ; enables the transmitter
out UCR, temp

out UDR, Identity

e we we

sends value

If we wished to send another piece of data, We would have to wait for the UDRE
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USR - UART Status Register (S0B)

Bit no. 7 6 5 4 3 2 1
Bitname RXC TXC UDRE FE OR - -

Overrun:

0: .UDR has been successfully transferred 1o
shift register »

1: UDR has been overwritten before byte was
moved into shift register

Framing Error:
0: No framing error (stop bit is ok)
1: Framing error detected (bad stop bit)

UART Data Register Empty:

0: The byte in UDR hasn't yet been emptied into the shift
register

1: UDRhas been emptied into the shift register

Transmission Complete:
Set when a character has been transmitted, and there is no new

data in UDR. If ‘the interrupt is enabled, this bit is automatically
cleared. If not, it must be cleared by setting the bit.

Reception Complete:
§ex when' a character has been received and stored in UDR. If the
interrupt is enabled, UDR must be read 10 clear this bit.

Figure 5.6

bit in USR 1o tell us that the byte has been mov.
UDR is ready for a new byte.
You can use UART to communicate with the RS232
simplest way to send bytes through your PC’s sen'a? p—;nPOI’I ot n oo The
that comes with Microsoft® Windows® called HyperTe
Programs — Accessories — Communications). You ¢
with your serial port (e.g. COM1), choose a baud rat
setting etc. When HyperTerminal connects to the serial
i'ou gpe 1s sent (as ASCII) through the serial port. If
oar such as the STK500, there is an RS232 socket that
directly to the RXD and TXD pins. If you do not have suc})wlo: ;;l}i;r:::;:
board, you will have to wire up the correct pins to RXD and TXD, and also
*

ed into the shift register. and

is through a program
rminal (Start Menu —
an create a connection }
& number of bits, parity
port, whatever character
you have a development
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" nake sure the voltage (which could be anywhere between 3 apd 12V), is regu-
" iated to a safe voltage (like 5 V). Figure 5.7 §h0\fvs how‘ to wire up the pins on
19-pin RS232 socket to allow direct communication with the AVR. Some of the
~ther pins are handshaking pins, which can be bypassed by connecting them

together as shown.

COM1
o= 3 —*Ground
PC ‘ —e Transmit (i.e. connect to RXD pin of AVR)
< - ——e Receive (i.e. connect to TXD pin of AVR)
O——=
CONN-D8

Figure 5.7

Program O: keyboard converter

» UART

# Sounds

o Seven segment displays
#» Output compare

We can use HyperTerminal to send characters to our melody maker projegt, via
the UART module. We can effectively convert our computer keyboard into a
musical keyboard by assigning note frequencies to the fiiffe}’em characters. For
example, when I press the letter ‘a’ when HyperTerminal is connectgd to the
AVR, it will send ‘a’ to the UART module. This can then trigger an interrupt.
sonvert the ASCII code for ‘a’ into the frequency for a ‘C’ note. I have arranged
my kevs on the keyboard so that they resemble how they are arranged on a
ai-and,'bm you may find you can fit more notes if you arrange them differently.
Figure 5.8 shows my arrangement.

Figure 5.8

i ol
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We will also use a seven segment display to show which note is being played;
this can help overcome any user confusion over how the letters on the computer
keyboard correspond to the musical notes. There will be a separate LED to
show the sharp symbol (#). The circuit diagram is shown in Figure 5.9, and the
flowchart in Figure 5.10.

In the Init section, set up inputs and outputs and set OC1 to toggle with every
output compare (this handles the speaker output for us, so there is no need to
write a routine for the Output Compare interrupt). Make all other timer settings
the same as in the melody maker, choose a baud rate of 9600, and enable the
UART receiver and the UART Receive Complete interrupt.

Again. the main body of the program is just a constant loop to Start. The
UART Receive Complete interrupt tells us that some new data has been
received on the line. which we should convert to a frequency and then change
OCRI1AH and OCRIAL accordingly. The beginning of the interrupt routine
should therefore read UDR into ZL. The ASCII conversion table is shown in
Appendix G. I will only use letiers a—z. all lower case, which correspond to
0x61 to Ox7A 1n ASCII, so subtract 0x61 from ZL to get a number between 0
and 25. If ZL is more than 25, an inappropriate key is being pressed, so move
26 into it. this ensures no matter what character we read. the program will stay
within the look-up table we are about to write. Now multiply ZL by two to
make it a word address. We wish to read the program memory into R0, using
the Ipm instruction, and then copy RO into OCR1AH. and OCRIAL. We can
do this directly (i.e. without having to play with octaves etc., so we don’t need
NoteH and NoteL). However, when doing this directly, we have to remember
the golden rule — you must write the higher byte first. There are two ways of
doing this. First, arrange the data in the look-up table so that the higher byte
actually comes first. For example, if I wished the number 0x1E84 to be the
code for a ‘C’ note, the top of my look-up table would be:

dw 0x841E

This is a little confusing, and an easier way is to start by pointing ZL to the
higher byte. In other words, if the table starts at byte address 26 in the program
memory, add 27 to ZL instead of 26, to point ZL to the higher bytes. Then to
read the lower byte, decrement ZL..

EXERCISE 5.2 Challenge! Write the first /2 lines of the UART Receive
Complete interrupt section which use the data received by the UART module to
write new values for OCR1AH and OCR1AL. N

1
For the display we have another look-up table, below the first, starting at word
address 43. We can simply add 60 (30 x 2) to ZL to point to the second look-
up table. This holds the seven segment codes for the note letters. Bit 3 will be
used to light up the # (sharp) LED.

x
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Main Body of Program UART Receive Interrupt T/CO Overflow Interrupt

Set-up Store received data Disconnect OC1 from
the Output Compare
o .

Set data = 26
]

'

Is data between
‘a’ and ‘z'?

Convert data to values for
OCR1AH,L

L

Convert data to 7-seg code
for PortB and # LED

|

Make OC1 toggle with the Quiput
Compare and reset TCNTO

Return
Figure 5.10

EXERCISE 5.3 What six lines point ZL to the second look-up table, read the
value, and output it to PortB? They should then mask all of RO (which contains
the value read from the table) except bit 3. and move the result into PortD. to

take care of the # LED. As you cannot use the andi instruction on RO-R13, you
will have to copy RO into temp.

EXERCISE 5.4 What five lines will set the OC1 pin to toggle with every Output
Compare interrupt, reset T/C0 and return?

EXERCISE 5.5 What three lines make up the T/CO Overflow interrupt, which
should disconnect the OC1 pin from the Output Compare interrupt and return?
v
This program is quite fun to play around with, but you may find the keyboard’s
repeat delay a nuisance. You can try to minimize this in the Control Panel, or
perhaps lengthen the minimum note to try to overcome it. If you move the
frequencies produced out of the audible range, this project can be developed into
more sinister applications — perhaps you could use it for espionage purposes ...”? ‘
. ) :
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Another UART project you may wish to make would be to build upon the
palindrome detector designed in Chapter 3, and interface it with a computer via
its serial port. The use of the Receive Complete interrupt would simplify the

program considerably.

Serial peripheral interface (SPI)

The UART described in the previous section has a few drawbacks. For a start it
is only half duplex (also called simplex) — this means you can send data in only
one direction on one line. Connecting the TXD pin on one device connected to
the RXD pin of another supports data transfer in one direction only, namely
TXD to RXD: SPI offers full duplex — the ability to send data in both directions
at the same time. It is also a svnchronous mode of transfer — this means all the
relevant devices are also connected to a common clock. so that they can all be
in synch, and operate at a higher speed.

Sending information through the SPI module is just as straightforward as
with UART. Any number of SPI devices can be connected together: however,
one device is called the Master, and the other devices are Slaves. The Master
can talk to the Slaves, and the Slaves can talk to the Master. but the Slaves
cannot talk to each other. The Master provides the clock that synchronizes the
connection, and it decides when it is going to talk to the Slave, and when the
Slave can talk to it. Figure 5.11 shows an arrangement with one Master and two
Slaves.

When you move a number into the SPI data register of the Master device, it
will immediately start a clock signal on the SCK pin (SPI Clock), and begin
shifting the data out on the MOSI pin (Master Out, Slave In) to the Slaves on

¢V
MASTER SLAVE
MOS! MOSI
MISO MISO
SCK SCK
s » 58
PBO
PB1
SLAVE
MOSI
MISO
SCK
ISS
Figure 5.11

‘-—————-—_—._,‘

i  or off the board.
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their MOSI _pi»n§. The Slave will receive the data only if it has been chosen by
the Master, i.e. if its SS pin is high. Therefore, using any two output pins (PBb

and PB] in the example in Figure 5.1 1), the Master can choose which of the _

S}aves 1t wants to talk to. As the Master sends its data to the Slave on the MOS]
pin, the Slave immediately begins sending the contents of its data register to the
Master on their MISO (Master In, Slave Out) pins. The two 8-bit sh?ﬁ registers
on Master and Slave behave like one big, circular 16-bit shift register — Zs bit

shxft.of’f~ Master_ onto Slave, bits shift off the Slave and into the Iv?aster You c;s
configure the SS pin on the Master as an output, and use it as a zenerz;l outpu:l
If you m_a_ke it an input, however, you must tie it to VCC, asbshown If thé
Master’s SS pin is pulled low, it assumes some other Master wants to ené]ave 1t

and will turn into a Slave! This allows some hierarchy between Masters in ’
complex SPI system. The 1/O registers involved with SPI are: :

SPDR (SP! Data Register, SOF) — Data to be sent, or data just received

SPCR (SPI Control Register, SOD) — Controls settings of the SPi

SPSR (SPI Status Register, SOE) — Displays status of parts of SPI (e.q. inter
rupt flags) = ]

SPDR is the data register into which you should move the byte to be sent to th
other device. and holds the received byte after the transmission is finished Yoe
must wait for the current transmission to finish before writing the next by.té Iu
be sent to SPDR. When reading the received byte, you have ;lightly longer to
read it. You can read the received byte while the next 'transmissionvis in pro:ress0
bu; once this next byte is completely received, the old received byte is gover_’
written. You therefore have until the next transaction completes to read th
received data. )
The SPSR contains two flags. Bit 6 is the write collision flag, which is set
when SPDR is written to before the current transmission is finished. Bit 7 is the
SPI interrupt flag, which is set when an SPI transmission complete.s. )
A_n example project you may wish to consider attempting could be an elec-
tronic chess game involving two AVR units which communicate using an Spj
link. The users at either end can input their move into their unit, which wil] th;.
se‘nd t'he move to the other unit. The game can be stored on the EEPROM ( thurs]
allowing games to continue after power has been removed and the units se
araFed). Sixty-four bytes are required, as each square on the board can gc
assigned a space in the EEPROM. The number in the EEPROM indicates v\;hich
piece 1s on that space. For example 00 could mean empty. 01 = black pawn, (2

_= biack knight etc., 81 = white pawn, 82 = white knight gtc. The allowed moves

would involve adding or subtracting numbers to a particular piece’s position
For examp]e, al!ox»'ed moves for bishops are at the basic level adding o;
subtracting multiples of 9 or 7. Figure 5.13 should help yod picture this
However, tests will be needed to ensure the piece doesn’t travel through another.

& =
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SPCR - SPI Control Register ($0D)

Bit no. 7 6 5 4 3 2 1 0
Bitname SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO

—

00} SCK speed is CK/4

01 |SCK speed is CK/16

10 | SCK speed is CK/64

11 { SCK speed is CK/128

Clock Phase:
0: Trigger on rising edge of SCK
1: Trigger on falling edge of SCK

Clock Polarity:
0: SCK pin low when idle
1: SCK pin high when idle

Master/Siave select:
C: Slave mode
1: Master mode

Data Order:
0: MSB of data word transmitted first
1: LSB of data word transmitted first

SPI Enable:
Q: SPI disabled
1: SP! Enabled. MOSI, MISO, SCK and SS pins enabled

SP! Interrupt Enable:
0: SPI interrupt disabled
1: SPI interrupt enabled

Figure 5.12

The moves could be entered in standard chess notation (e.g. Be2 = Bishop to
the E2 square), or with the help of a more visual display which resembles the

| board. This project is left as an exercise for the chess enthusiasts, but I would be
i interested in seeing your solutions (my email address is given in Appendix I).
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57 59 “61, 63.--
_5.50 5? 54
 .‘ .43 45 47
34 36 38

20 _31.’;;

Figure 5.13

Both UART and SPI can be implemented on chips without these custom
modules, entirely with software. For more information on these, you can check
out Claus Kiihnel’s book listed in Appendix I, but my advice would be simply
to use a chip that has the hardware you require.

Tiny15’s eccentric timer 1

As a brief aside, it is worth noting that the Tiny15 has an 8-bit T/C1, and a-few
other eccentricities that make it different from the norm. Whereas on other
chips, T/CO and T/C1 can count up at no more than CK, the clock speed at
which instructions are performed, the T/C1 on the Tiny15 can actually count up
Jaster than CK. It can be set to count at 16CK, 8CK, 4CK or 2CK, as well as
CK, and also at a larger range of fractions of CK, as shown in the Tiny15’s bit
assignment of TCCR1, the T/C1 Control Register (Figure 5.14). The reason it
can count higher than CK is that it has access to a high-speed clock (called
PCK) that runs 16 times faster than CK; values such as 8CK and 4CK are
obtained by prescaling this high-speed-clock. :
As T/C1 is only 8 bit, the PWM is 8 bit. Rather than counting up and down
in PWM mode, T/C1 is always counting up, and will change the state of the
OCI1 pin when it reaches the top. The top value of T/C1 is given by the OCR1B

e
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TCCRI - T/ClI Contro! Register ($30) on the Tiny15

3it no. 7

5 4 3

2

1 0

3it name CTC1 PWM1 COM1A1 COM1A0 ADIE ADPS2 ADPS1 ADPS0

bl A

v
£y

“igure 5.14

STOP! T/C1 is stopped

0001

T/ICY

counts at 16 x CK

[slo3]e]

T/C5 counts at 8 x CK

0011

TICH

counts at 4 x CK

0100

TCN

counts at 12 x CK

(o213}

TICY

counts at CK

0110

T/ICY

counts at CK/2

0111

TiCh

counts at CK/4

1000

TICT

counts at CK/8

1001

TICY

counts at CK/16

1010

T/ICY

counts at CK/32

101

TICH

counts at CK/64

1100

TIC1

counts at CK/128

1101

T/ICY

counts at CK/256

1110

T

counts at CK/512

i

Tic1

counts at CK/1024

When in PWM mode ...

00 Do nothing 1o OC1 pin

01 Do nothing to OC1 pin

16 Clear OC1 when compare match, set on T/C1 overfiow

11 Set OC1 when éompare match, clear on T/C1 overflow

When not in PWM mode ...

00 | Do nothing 10 OC1 pin

01 | Toggle OC1 when Output Compare interrupt occurs

10 | Ciear OC1 when Qutput Compare interrupt occurs

11 | Set OC1 when Output Compare interrupt occurs

PWM Enable:
0: PWM disabled
1: PWM enabled (8-bit}

Clear Timer/Counter1 on Compare Match:
0: Doesn‘t reset T/C1 on Compare Match
1: T/C1 is reset to $00 on Compare Match

i
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I/O register. The PWM is glitch free, as before, so updates to OCRIA occur
only when T/C1 reaches the top value, as shown in Figure 5.15.

OCR1B N TCNT1

Tttt/ t-==—-/--0OCR1A

l I OC1A pin

As if this wasn't enough. therc’s another 1/0 register thrown in. with the
mysterious title of Special Function 10 Register: SFIOR ($2C). This reoister
allows you to reser the prescaler of either of timer/counters. What on earth does
this mean? Let’s look at how the prescdler works. Essentially. the prescaler is a
10-bit register that counts up at CK. When T/C0. for example, s ‘prescaled at
CK/2" it counts with bit 0 of the prescaler. If it is ‘prescaled at CK/64". it counts
with bit 5 of the prescaler etc. This is illustrated in Figure 5.16.

Figure 5.15

Bit 8

Bit 0
ck—>10]1/0/0[{0|0|1]0|0]|1 |
, e
A
\4 A\ 4 \ 4 \ 4
CK/1024  CK/128 CK/64 CK/8 CK/2

Figure 5.16

When you reset the prescaler, you wipe its value to 0, ensuring a more accur-
ate count. Say you wished to set your T/CO to count at CK/1024. In steady siate
operation it will be perfectly accurate, but for that very first count, we don’t
know that the number in the prescaler doesn’t happeg*r‘to be 1023, and so the
_f irst count will come a lot sooner than expected. To reset the prescafer for T/CO,
Just set bit 0 of SFIOR (the bit will then clear itself). To reset the prescaler for
T/C1, set bit 1 of SFIOR. Finally, with bit 2 of SF IOR, we are able to force a
change on the OC1A pin, according to the settings in bits 4 and 5 of TCCRI.

In other words, we ‘fool’ the pin into thinking there has been an Output
- . R
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Compare Match; however there is no interrupt generated, and T/C1 will not

reset.
Although at the time of publication, the Tinyl5 was the only model with this

type of T/Cl, we can expect that other models of AVR will emerge with a
similar T/C1.

Shrtcts

There are a number of ways to trim down your program into a slender and
seductive beauty. One of the easiest ways is to use the .macro assembler direc-
tive. This allows you to, in effect, create your own instructions.

At the top of your program ...
nopnop ; the name of this macro is nopnop

rjmp PC+1

Example 5.1
.macro

.endmacro

Then, in the rest of your program, you can write the instruction nopnop. and
the assembler will interpret this as rjmp ~ PC+1. Why have I called this
nopnop? Jumping to the next line with the rjmp instruction wastes nvo clock
cycles. as the rjmp instruction takes twice as long as most instructions. Writing
rjmp PC+1 is therefore equivalent to writing two nops. but only takes up
one instruction. Macros can also be given opcerands, which are referred to as

@0, @] etc.

Example 5.2

; the name of this macro is muitiply

.macro multiply
' mov  temp, @0 H

clr @0 , Wipes answer register
tst @1 " ; tests multplier
breq PC+4 :
add @0, temp ; adds multiplicand to itself
dec @1 H
rimp PC-4 ; repeats

.endmacro

in the program, if we wanted to multiply the number in Seconds by the number
in Counter, we could simply write:

multiply Seconds, Counter

Note that we can-use labels in the macro, these will immediately be translated
1s relative jumps, and so there will be no risk of label duplication should the
macro be used more than once in the program.

Final program P: computer controlled roboi' .
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EXERCISE 5.6 Create a macro ;
called sk ; . .
the zero flag is set. skeq which skips the next Instruction if |

EXERCISE 5.7  Create a macro call iWai ; : : .
1/O register goes high, ed HiWait which will wait untj] a bit in an

Itisi in . . .
s gg?ﬁgir:g stoa:éas?riy ;n your mind the thtmction between subroutines and
s, Macr one.Wordpayt\jvays of abbreviating longer or less pretty pieces of
ragram wone-word c l1ons. The assem.bler will expand these out, so your
US{I_W m e p ’_] as long (but you will never see the expanded versio

SpaC: sut }::unrnis will actually mal'(e your program shorter (i.e. take up l:st
fpace in th EO:}:am mem}ory), BUT may well take longer to run. The rcall

1on takes three clock cycles. and the ret instruction four clock
subroutines are literally a waste of time for really short shortcuts et cyeles. so

A Mega summary

Covering the cornucopia of new i ' :
that you can at least decide whether it's w, e
they offer more of what you-se hscerc: Z:(f);h rlss:gx?ii]renrcs)re about them. First.
AI')I'ES‘ more e Pifls. more memory and more instructions. more PWM, more
tions innt::dtljrlsezu;l[(l)zis \{?'lt]h]mo three categories. There are a few new instruc-
which performs multi blic;t' an owchip multiplier ~ specially buit hardware
o multiply tuo ren}?g[ 1on1n two clock cycles. The mul instruction is used
unsiened/fract; sisiers Iogether: Other multiply instructions (signed/ 1
dire:t ca]]srathljo'nal etc.) are also available. The call and jmp instructions ar
t0jurnp 0, or call. s pat of s e ference tothe user s the abilty
ence this li,mitatio;l oﬁ/nTnnI\(/)l (t’he N peram, though you probably won't experi-
The new instructj veea AVR.S. unless you write really large programs
ructions algo include additions to the memory access | Ctions.
most notable is the stm instruction. This stores the word spread ov RO aons.
Into the program memory. This allows the prOéram to wri}:e [a ov e'r RO and R}
intAnomeEfi?n.icma”y useful feature availabie on most new /Z\lftlizli the JTAG
v :z vaczac*’e.for ;i 1S :\ Is};andard that has peen developed to facilitate debugging. |t
| way e to send the entire contents of its registers (1/0, tvcork:ing

=

P

® Serial communication
® PWM to drive a motor

. i. 'Sevqn segment display to display messages
3 ; ) s
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A computer controlled robot has been chosen as a fun project which ties together ;|
some of the topics discussed in the book. The project that will be developed will
be a skeleton, around which a semi-intelligent robot can be based. We can send
commands to the robot through the serial port on the computer to the UART
module on the AVR. Motor speed can be controlled through the use of PWM, and
a seven segment display will be used to show messages, and allow the robot to
‘talk’. The use of EEPROM to store moves and the application of the music
modules are some basic enhancements that could be added on. Sensors could be
placed on the robot, and it could send information back to the computer regarding —
the states of these sensors. More sophisticated software on the computer end, &
which would make the robot behave like a state machine and respond to various x
inputs, would be a more interesting development. but this goes beyond the scope w_
of this book. The circuit diagram of the basic robot 1s shown in Figure 5.17. 5

Both motors are driven from the OC1 pin, which is the output of the PWM. '
To allow the robot to turn, the left motor can be turned off by setting the PD2 -
pin. This means it can turn in one direction only, but still gives it plenty of c .
freedom. A larger AVR, such as the 8515, has two PWM outputs, on OC1 A and — | — =T — T r]‘:,
OC1B pins. This means the motors can be driven independently. '_l_‘ l_l_l l__l__.l !__l__.‘ x

The commands we can send the robot are shown in Table 5.1. n[] SR EENARRE RN ANENRER AR

b
a
| ey S

| P
R11k

Table 5.1 f

R101‘k

Letter ASCII Function Message to PC

g 0x67 Go/Stop ‘Go’ or ‘Stop’ °
? 0x74 Begin turning or end turning \\S‘
(stop/start left motor) ‘Turning’
+ 0x2B Speed up ‘Speeding up’
- 0x2D Slow down ‘Slowing down’
s 0x73 Change speed .
(followed by two-digit number, e.g. s25)  ‘Speed setto ...’
[ 0x5B Begin message
(to be displayed on seven segment displays) <message>
] 0x5D End message Oﬁ

R1-8

2
3
]

L

E
R9 1
| ST

R14
~2
| SPSREEE ¢
Tk
PBOAINO
PB1/AIN1

U1
POO/RXD
POU/TXD
PO2/INTO
PD3/INT1
PD4/TO
PO5/TY
PO6/ICP

AT90S2313

XTAL1
- xTAL2
~—{ RESET

E LEFT

c2| l'

2200

2.4576MHz
0
4

All other inputs will be ignored. The robot will send the computer back
confirmations of each action. For example, if it is sent a ‘t’, it will reply with ) -
“Turning’. Not all letters can be displayed on the seven segment displays — to be 7
able to display any letter we need a more complex display (e.g. a 14 segment :
display). As it is, we are unable to display letters k, m, g, v, w and x.

The structure of the program is very straightforward, and entirely interrupt
driven. If a receive interrupt occurs, the program identifies the character received
and responds accordingly. To simplify the Display subroutine, we can make this !

1ot

—‘BZpF

W‘ﬁ"”‘m s
»
Figure 5.17
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driven by T/CO0, such that every time T/CO overflows, the Display subroutine is
called. This not only removes the burden on us of remembering to call it regu-
larly, but also means we can remove the counter register that allows the entire
subroutine to be executed only once every 50 visits. We must therefore configure
T/CO so that it overflows sufficiently often. The refresh rate should be more than
25 times a second and, bearing in mind there are four displays, this means the
Display subroutine should be called at least 100 times a second. As T/CO over-
fiows after 256 counts, this means a minimum T/CO rate of 25.6 kHz. If we are
using a 2.4576 MHz crystal, this represents prescaling of CK/64.

In the Init section, configure the inputs and outputs, and T/C0. Set up T/C1
to count at CK, set OC1 1o clear when T/C1 passes the threshold counting up.
and set when T/C1 passes it coming down (this means the higher the number in
OCI1AH/L, the faster the speed of the motor). Disable PWM for the time being
(8-bit PWM will be enabled when a ‘g’ is received from the computer). Don't
forget to set up the stack pointer 1/O registers. On the 2313 this is just SPL. and
which you should load with ‘RAMEND?’. Enable the Receive Complete UART
Interrupt, and enable the Receive Mode. Set the UART baud rate to 9600. and
enable the globai interrupt bit.

Adjust the Display subroutine from prewous projects to include four
displays. The seven segment code to be displaved will be stored in registers
R21-24. Note that as these will hold the seven segment code. their values can
be moved directly into PortB.

EXERCISE 5.8 Make the necessary changes to create a Display subroutine for
this program.

" The Receive Complete Interrupt should first test to see if what is being sent is
to be taken as a command, or as part of a text message. The T bit will be used
to indicate which interpretation is appropriate (i.e. the start message command
‘[* will set the T bit, and the end message command ‘" will clear it. It should
also be cleared in the Init section. The Receive Complete Interrupt section
should start by testing for an end message symbol. and jump 10 EndMessage if
it is received. The next test should be the T bit. if it is set we should branch 10
Message. The other symbols (g, t. s, +, —) can be tested in any order, though 1t
is simplest to put the test for ‘{” at the end. If it 1s *[", the T bit should be set.
Any other symbol should be ignored.

The Turning section should toggle the state of the PD2 pin (which controls
the left motor). The receive mode should then be disabled, and the transmit
mode enabled. Move the ASCII code fora ‘T” into temp, and then call a subrou-
tine called Send. This subroutine will take the number in temp and send it
through the UART module; we will write the subroutine later. Repeat the above
for the rest of the letters. We also need to send a new line (also called line feed)
and carriage return symbol, so that each message sent to the PC appears on a

new line. These symbols are 0x0A and 0xOD respectively, but these will be

i
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common to all messages, so at this point (after sending the ‘g’), just branch to
EndMessage, which will do the rest.

EndMessage will clear the T bit, send 0x0A and 0x0D to the PC, and then

disable the transmit mode and enable the receive mode.

The Send subroutine should put.the contents of temp into the UDR, and then
enter a loop in which it constantly checks the transmit complete flag (the TXC
bit in USR). You must not write to UDR in this loop (i.e. loop to Send+1, and
not to Send), because this resets the TXC flag, which means you will stay in the
loop forever. After the TXC flag goes high, you must reset it by setting it, and
then return.

The SpeedUp section will read in the number currently in OCR1AL. and add
10 to it. If the carry flag is set. the number should be capped at OxFF, and then
moved back to OCRIAL. Note that you cannor use the following:

subi temp, -10

This really adds 246 to temp. which will almost invariably set the carry flag.
You should therefore move 10 into another working register, and add it to temp
using the add instruction. Alternatively, you could use ZL. and the adiw
instruction. You should then repeat the same steps as in Turning to send the
appropriate message back to the PC. Similarly. the SlowDown scction subtracts
10 from OCRIAL. forcing the value to 0 if it goes negative. The usual method
1s used to send the reply to the PC.

The GoStop scction is slightly harder. You must first test the state of the
PWM (ie. is it enabled?) by testing bit 0 of TCCR1A. If it is enabled, disable
it, and send ‘STOP!” to the PC. Ifit is enabled, jump to a different section called
Go. This section should enable 8-bit PWM (set bit 0 of TCCRI1A), and send
‘GO!”’ to the PC.

The ChangeSpeed section has to wait for two more characters (the two digits

of the speed). It should start with a loop to wait for the first character (waiting
for the RXC bit in USR 10 set). The first digit received should be moved from
the UDR into a working register calied speed10. This number should be copied
into a temporary register, and have 0x30 subtracted from it. This converts the
ASCII for -9, into the numbers 0 to 9. The resuit of this should then be multi-
plied by 10, as this is the tens digit. The next digit should then be received, and
the result stored in a register called speed1. Again, convert this into the actual
number (subtract 0x30), and add it to the tens digit. It is important you keep
speed10 and speed1 unchanged, as these will be used when replying to the PC.
The value representing the total two-digit number will Be between 0 and 99. We

-would like to convert this to something between 0 and 255 — an easy way to do

this is to multiply it by 3, but cap anything that goes above 255. The result
should be moved into OCR1AL. The reply should be sent to the PC ‘Speed Set
To xx’, with xx being the new two-digit speed. For letters, we move the ASCII
values into temp as beforc. For thexacmal speed, just copy speed10 or speedl
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into temp, and call Send, as before. After sending speedl, this section should
jump to EndMessage.

Finally, the hardest section is Message. This converts input characters from
ASCII into seven segment code, and scrolls the result through the displays as
they come in. The display registers will be called Thousands, Hundreds,
Tens and Ones. As new numbers come in, Hundreds will be cepied to
Thousands, Tens to Hundreds, Ones to Tens, and finally the new number
will ‘be written to Ones. First, however, we must convert ASCII to seven
segment numbers. We will try to display the digits ‘0* to ‘9’ only, the lower
case letters ‘a’ to ‘z’, and the upper case letters ‘A’ to ‘Z’, with the exclusions
we noted earlier. With the letters, where a lower case letter is not possible
whiist an upper case is (e.g. ‘e’ and ‘E’), the upper case alternative is returned.
This ensures that the program will try to produce the intended case, but gives
getting the letter right at all a higher priority. As you may have guessed, this
conversion process is carried out with one large look-up table. The first task
is simply to reply to the PC with the character just received. This is straight-
forward — read UDR into ZL. disable received mode, enable transmit mode,
copv ZL into temp. and then call the Send subroutine. Change back into
receive mode and disable transmit mode. and then subtract 0x10 from ZL.
The digits 0-9 start at 0x30 in ASCIIL. so subtracting 0x10 will make a ‘0"
correspond to 0x20 etc. This is a bvte address, so the word address will be half
of this, i.e. a ‘0" corresponds to word address Ox10. We can make this the start
of our look-up table (use .org 0x10 at the start of the table). The first five
words in the look-up table can represent the digits 0-9. Make sure you work
out your own values for the look-up table, instead of copying those in my
program, as your circuit board may not be the same as mine. Capital letters
“A’to ‘Z’ start at ASCII value Cx41. Rather than writing empty lines into the
look-up table, simply write .org 0x18, to point the next part of the look-up
table at program address 0x18. which is byte address 0x30, which corre-
sponds to ASCII 0x40. The first byte'in the table is therefore not important,
but the second should correspond to ‘A’, and so on. Finally, letters ‘a’ to ‘z’
begin at ASCII value 0x61, and so use .org 0x28 at the top of the look-up
table for the lower case letters. _

I realized when testing that a space (i.e. pressing the space bar) was an im-
portant symbo} to transmit. This is 0x20 in ASCII, which gets reduced to byvte
address 0x10, and word address 0x08. A clever way to deal with spaces, there-
fore, 1s to make address 0x08 a nop instruction (nop is translated as 0x0000 by
the assembler). nop would be read as any of the other bytes, and return
0b00000000 which corresponds to all bits off (i.e. a space). 0x08 happens to be
the UART Empty interrupt, which we are not using, so it is fine to simply write
nop. In the unforeseeable event that the UART Empty interrupt does occur, all
that will happen is that it will execute the nop, and then the reti instruction
which follows at address 0x09. The program is therefore still immune to an
unexpected occurrence of the UART Empty interrupt. Once the program

W‘h#m:w"'ﬂ ety &

~ have been when you starte
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memory hasibeen read, and the values in t
Message section is finished.

voﬂclilg tcon;:lugjcf, the.final program, my version is shown in Program P.  hope |
;'ol;lot Pry I? u;’d this one, and work on some enhancements to make it more
1xe. It really is a good platform for a variety of interesting projects.

he registers shifted along, the

Conclusions

When you are debugging your own programs, I suggest the following. First, try
;0 break dqwn your program into discrete units which can be tested indebeni
ently — this way you can pinpoint bugs quickly. Another frustrating problem
can be not being able 10 look inside the register of the AVR while it is running.
This can be overcome by using an emulator, though there is a cheaper way. At
certain points in the program you could try sendinavthe contents of certain régis-
ters through the UART to your PC, and see how {hcy are changing. The inser-
tion of a UART transmission module in your program may not be worth the
extra work, but it does give you a good indication of what's oing on inside vour
AVR - like a poor man’s JTAG or cmulator. T )

Throughout this book we have encountered examples of attempting to

perform a task with limited means, and then learning about new tools which
allow us to pcrform these tasks with greater ease. It is often the case that the
more comp]xcalcq the microcontroller becomes. the simpler a given program
wnll' become. This gives us some insight into the compror;lise that bchip
d.CSIgnCTS .facg bCI.WF‘Cn giving a chip functionality and keeping it relatively
51mp]§. This simplicity is necessary not only-to keep costs low, but also to make
the chip easy to get 1o grips with. [ have no doubt that new features will emerge
on new Fnod;ls of AVR that appear after the publication of this book. These will
almpst inevitably centre around some 1/0 register, perhaps with a certain bit
assngnment.th’at controls different aspects. This information can be gleaned
from the chip’s datasheets, which should not be as daunting now as the;r might
d. By reading through these you should be able to

Efef; abr;:ast of any new fungtions — make sure you keep up to date with these,
ey re there to make your life as a programmer easier!
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Appendix A

Specifications of some PICs

Device Pins VO ROM RAM EEPROM  Features
(bytes) (bytes)

Tinyll 8§ 6 1K - - 8-bit timer, WDT, Analogue
comparator, 4 interrupts,
on-chip oscillator

Tinyl2 8§ 6 1K - 64 As Tinyl1, 5 interrupts

Tinyls & 6 1K - 64 As Tiny11, Two 8-bit
timers, 4 ADC channels. §
interrupts. PWM

1200 20 15 1K - 64 As Tinyl1. 3 interrupts

2313 20 15 2K 128 128 Extended instruction set. 10
interrupts, UART. 8-bit and
16-bit timers. PWM, WDT.
Analogue comparator

2323 8 3 2K 128 128 Extended instruction set. 2
interrupts, 8 bit timer.

: WDT

2343 8 4 2K 128 128 As 2323, on-chip oscillator

4433 28 20 4K 128 256 Extended instruction set.
14 interrupts, SPI, UART,
8-bit and 16-bit timers,
PWM, WDT, Analogue
comparator, six 10-bit A/D
channels

8515 40 32 8K 512 512 Extended instruction set.
11 interrupts, SPI1, UART.
8-bit and 16-bit timers, 2
PWM, WDT, Analogue
comparator

8535 40 32 8K 512 512 As 85135, 15 interrupts,

two 8-bit timers, 3 PWM,
RTC Timer, eight 10-bit
A/D channels

e

Appendix B
Pin layouts of various AVRs

] I O
RESET [ 1 20 b vee RESET 1 1 20 D vce
PDO O 2 12 O PB7 {SCK) (RXD) PDO ] 2 18 O PB7 (SCK)
PD1 ] 3 18 {7 PBE (MISO) (TXD) PD1 O 3 18 O PBS (MISO)
XTAL2 C] 4 17 |3 PB5 (MOS)) XTAL2 ] 4 17 {3 PBS (MOSI)
XTAL1 OO 5§ 18 D PB4 XTAL1 3 5 18 [ PB4
(INTOYPD2 ] & 15 I3 PB3 {INTO)PD2 O 6 15 [C PB3 (OC1)
PD3 4 7 14 O PB2 (INT1) PD3 T} 7 14 [0 pB2
(TO} PD4 O 8 13 [0 PB1 (AIN1) (T0) PD4 1 8 13 [Z PB1 (AIN1)
PD5 ] 8 12 [3 PBO (AINO) (T1) PD5 J 8 i2 [0 PBO (AINOD)
GND L] 10 11 {3 PDB GND O 10 11 [5 PDS (ICP)
AT90S1200 AT90S2313
U
(TO) PBO O 4 40 P vee (T0) PBO O 14 40 O pap (ADCD)
(T1)pe1 O 2 39 3 PAD (ADO) (T1)PB1 O 2 3% J pa1 (ADC1)
(AINC) PB2 [ 3 38 3 PA1 (AD1) (AINO) PB2 O 3 38 J pA2 (ADC2)
(AIN1) PB3 [ 4 37 B PA2 (AD2) (AIN1) PB3 [ 4 37 3 pA3 (ADC3)
(SS)PB4 ] 5 38 [0 PA3 (AD3) (SS) PB4 O 5 36 [0 pA4 (ADC4)
(MOS1)PB5 O 6 35 [J PA4 (AD4)  (MOSI) PBS ] 6 35 0 paAs (ADCS)
(miso)rPBs O 7 34 ) PA5 (ADS)  (MISO) PB6 (O 7 34 3 pag (ADCS)
(scK) PB7 O 8 33 O PAG6 (ADS) (SCK) PBT O} 8 33 D pa7 (ADCT)
RESET O 9 32 [J PA7 (AD7) RESET O 9 32 3 AREF
(RXD) PDO O 10 313 IcP vce O 10 31 [J AGND
(TXD) PD1 O 11 30 P ALE GND [ 11 30 O AvcC
(INTO) PD2 O 12 29 0 oci1B XTAL2 ] 12 28 [J PC7 (TOSC2)
(NT1)PD3 O 13 28 [3 PC7 (A15) XTALY ] 13 28 [ PC6 (TOSC1)
PD¢ O 14 27 3 PC6 (A14) (RXD) PDO [] 14 27 [ PCS
(0C1A) PD5 [ 15 28 P FC5 (A13) (TXD) PD1 [ 15 26 O PC4
(WR) PDE O] 18 25 [3 PC4 (A12) (INTO) PD2 ] 18 25 0 PC3
(RD) PD7 O 17 24 B PC3 (A11) (INT1) PD3 [ 17 24 0 PC2
XTAL2 O 18 23 |5 PC2(A10) (CCiB)PD4 [] 18 23 P PCH
XTALY O 18 22 P PC1 (A9) (0C1A) PD5 O 18 22 b Pco
GND [ 20 21 [ PCO (A8) (icP) PD8 ] 20 21 |3 PD7 (0C2)
AT90S8515 AT90S8535
] (o
(RESET; PR3 O gpvee RESET:PB5 O 4 gvee
(XTAL1; PE3 O 2 70PB2(TOY (XTAL1: PR3 2 715 PB2 (SCKTY;
(XTAL)PB4 D 2 51 PB1 (INTO/AINT: (XTALZ;PBAO) 2 6IPB1 (MISOINTOAINT)
GND O 4 513 PBD (AING GND [ 4 5 71 PBG {MOSIFAIND}
L L
Tinyl0 Tiny12
— y
(RESET/ADCO) PBS [} 1 spvce :
(ADC3) PB4 [ 2 7 1 PB2 (ADCH/SCK/TQ/INTO)
(ADC2) PB3[] 3 6 I PB1 (AIN1/MISO/OC1A)
GND [14 5[ PBO (AINO/AREF/MOSH)
Tinyl5




Appendix L. INromesnion overview 1o

Appendix C | |
Instruction overview  ARITHMETIC LOGIC

ADC  addswo regs with carry AND ANDswo regs
B NCHING ADD  adds wo registers ANDI *ANDs immediate with reg.
SUBROQUTINES ADIW agscine EOR EORsiwo registers
PUSH CALL  touzcatt ]
" L. SH . . A e DEC  decrements register OR  ORswo registers
Pushos 1oL ORKE XU ]C AI & R =
: CALL  iadireat cali .
, ' INC  increments register ORI  *ORsimmediate with reg.
POP RCALL relative call
;,‘,;,\ ree. off siick LDI *|oads immediate to register S
T RET  reum SHIFTING BIT
. NMUL  mwteries nec segiven
RETI ::::r:‘:p i:mblmg ’ ) ASR  arithmetic shift right
SBC  substwo regs with carry . o
NP g jimp ] LSR logical shift right
SBCI *subsimmediate w/ camy
UMP diec jomg ) I ’ LSL  1ogical shift left
. SB{\\ subeoanraoa et
RIMP  relative jump SREG ROL  rouwte left thru carry
i IO SO IR SEUII I L 2 :
; hranch if SREG o SUB  subtracts wo registers
; BRBC s elear BCLR  clear SREG bit : . ) ROR  route right thru carry
b i branch if SREG . i SUBI * i iate i co
; . S Lice subs immediate from reg.
y VO Registers _______ LA BRBS e | BSET sskEobr g
E CBI 'ﬁ'clears IFR bit SBIC T;’:‘:J‘;:j E : BLD  1oud bit from T : } COM invens all bits of register COMPARING
' [ H .
! . - skip if IFR [ ! . . CpP compare two regisicrs
; SBI  sets IFR bit SBIS 7 :i:‘i’;sﬂ : : : NEG changes sign of register p 2
! H skipif register | TTTTTTTTTITITITIoTIOITTT .
5 IN  moves IFR into reg. E SBRC ri)s clear CLR  dlears register (makes 0) CpC compare regs and carry
1 1 A . * - .
E OUT moves reg. into IFR E SBRS ;?:[i)slf;;cgmcr SER  *seisall bits in register CPI compare with immediate
SWAP ;‘i:;lll;uppcr and lower CPSE compare and skip if equal
MISCELLANEOUS RAM
NOP o operation - wasle a cycle LD indirect Joad from SRAM
WDR  reset watchdog timer ST indirect store 1o SRAM Instructions in grey are not available on all Chips
SLEEP LDS * These instructions only operate on working registers R16-R31
ds chi | RN firect Joad from SRARS . . . 3
sends chip to sieep et Tord iR T These instruction only operate on I/O registers $00:$1F

STS  direct store 10 SRAM

LPM  indirectload from Prog. Men.
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M k4
L Ng fuun * — H
3 W
®
Non-critical instructions ""')"""A
Serpemme
Instruction Action Equivalent Instruction
CBR Rd, Obxxxxxxxx | Clears certain bits in a register ANDI  Rd. Obxxxxxxxx
SBR  Rd. Obxxxxxxxx | Sets certain bits in a register ORI Rd, ObxXXXXXXX
TST Rd Test for zero or minus AND Rd. Rd
BRCC <label> . Branch to <label> if C flag is clear BRBC 0. <label>
BRCQ <label> 1 Branch 10 <labe1> 1f C flag is set BRBS 0. <label>
i o : P S his 114 éa I GF:B he

15 z NG §-BRB Y32 5 : iy
BRVC <ldbel> Branch 1o <label> if V ﬂuﬂ is clcar BRBC  3.<label>
BRVQ <lanel> Branch 10 <labcl> 11‘\’ ﬂ..w is scl BRBS‘ ‘% abcl>

£48 1) ”“higiﬁléforeéuﬁl : ) R
BRHC <lab;l> Bramh to <label> if H flag is ciear BRBC 5. <label>
BRHS <label> Branch 10 <iabel> if H flag is set BRBS 5. <label>
BRTC <label> Branch to <label> if T flag is clear BRBC 6. <label>
BRTS <label> Branch to <label> if T flag is set BRBS 6. <label>
BRID <iabel> Branch 10 <label> if interrupts disabled | BRBC 7. <label>
BRIE <label> Branch 10 <label> if interrupts enabled | BRBS 7. <label>
CLC Clears Carry Flag BCLR 0
CLZ Clears Zero Flag BCLR 1
CLN Clears Negative Flag BCLR 2
CLY Clears V (two's complement) Fiag BCLR 3
CLS Clears Sign Flag - BCLR 4
CLH Clears Half Carrv Flag BCLR 5
CLT Clears Temp Flag - BCLR 6
CL1 Clears I bit (disables interrupts) BCLR 7
SEC Sets Carry Flag BSET 0
SEZ Sets Zero Flag BSET |
SEN Sets Negative Flag BSET 2
SEV Sets V (iwo's complement) Flag BSET 3
SES Sets Sign Flag BSET 4
SEH Sets Half Carry Flag BSET 3
SET Sets Temp Flag BSET 6
SEI Sets I bit (enables interrupts) BSET 7

Shaded instructions refer to instructions useful after compare or
subtract instructions, such as CP. CPL SUB and SUBL

St e

Y g

Appendix D
Instruction glossary

Here is a list of all instructions used by the standard and Tiny A¥Rs. The
Mega AVRs have a few more instructions (involving, for example, multipli-
cation).

The following names are used in the descriptions:

reg refers to:  any of the 32 working registers
hreg refers to:  the higher half of the workmg registers (16-31)
ioreg refers to:  any of the 64 input/output registers

lioreg  refersto:  the lower half of the I/O registers (0-31)
longreg refersto:  one of the 16-bit ‘long’ registers (e.g. X, Y. Z)

adce regl, reg2 [HSVNZ.C)
- adds the number in regl. the number in reg2. and the carry bit leaving the
result in reg}

add regl, reg2 [HSVNZ(]
- adds the number in regl with the number in reg2, leaving the result in reg]l

adiw longreg, number [SVNZC]
- (Not for 1200 and Tiny AVRs) — adds a number between 0 and 63 to one of
the 16-bit ‘long’ registers (X, Y, Z)

and regl, reg2 [SVNZ]
- ANDs the number in regl with the number in reg2, leaving the result in reg]

andi hreg, number [SVNZ]
- ANDs a number (0-255) with the number in an upper-half register, leaving
the result in that register

asr reg [SVNZC]
- ‘arithmetically’ shifts all the bits in reg to the right (brt 7 remains unchanged)

belr ¢ bit ' - [ITHSVNZC]
- clears a bit in SREG (i.e. makes it 0)
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bid reg, bit (-]
- loads the T bit into a certain bit in a register

brbe bit, label -
- tests a bit in SREG, and branches (jumps) to label if the bit is clear. Note: the
label must be within 63 instructions of the brbc instruction.

brbs bit, label ; -]
- tests a bit in SREG, and branches (jumps) to label if the bit is set. Note: the
label must be within 63 instructions of the brbs instruction

bree label - tests Carry Flag. branches if clear

bres label - tests Carry Flag, branches if set

breq label - tests Zero Flag, branches if set (regs are equal)

brge label - tests Sign Flag, branches if clear (greater or
equal)

brhe label - tests Half Carry Flag, branches if clear

brhs label - tests Half Carry Fiag, branches if sct

brid label - tests Interrupt Flag, branches if clear (disabled)

brie label - tests Interrupt Flag. branches if set (enabled)

brie label - tests Carry Flag. branches if set (lower)

brit label - tests Sign Flag, branches if set (less than)

brmi label - tests Negative Flag. branches if set (minus)

brne label - tests Zero Flag, branches if clear (regs are not
equal)

brpl label - tests Negative Flag, branches if clear (plus)

brsh label - tests Carry Flag, branches if set (same or
higher)

brtc label - tests T Flag, branches if clear

brts label - tests T Flag, branches if set

brve label - tests Overflow Flag, branches if clear

brvs label - tests Overflow Flag. branches if set

bset bit [ITHSVNZ(]

- sets a bit in SREG (i.e. makes it 1)

bst reg, bit [T}
- stores a certain bit in a register in the T bit

call label {-1
- (Only for Mega AVRs) — calls the subroutine given by label, which can be
anywhere in the program
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chi lioreg, bit -1
- clears (makes 0) a bit in one of the Jower-half I/O registers (0-31)

cbr reg, binary [SVNZ]
- clears some bits in a register, according to the 8-bit binary number in which
a 0 means ‘clear this bit’ and a 1 means ‘leave this bit alone’

cle - clears Carry Flag 1€
clh - clears Half Carry Flag [H]
cli - clears Interrupt Flag (n
cin - clears Negative Flag , [N]
clr reg [SVNZ]

- clears a register (moves 0 into it)

cls - clears Sign Flag [S]
clt - clears T Bit [T
elv - clears Overflow Flag V]
clz - clears Zero Flag {23
com reg [SVNZU]

- complements a register (inverts all the bits — ones become zeros. zeros become
ones)

. cp regl, reg2 [HSVNZC]
- compares the numbers in regl and reg2, effectively subtracts reg2 from regl,
whilst leaving both registers unchanged

cpe regl, reg2 [HSVNZ(]
- compares the numbers in regl and reg2 taking into account the carry flag.
effectively performs (regl minus reg2 minus carry flag), whilst leaving both
registers unchanged

cpi hreg, number THSVNZC]
- compares the number in hreg with a number, effectively subtracts number
from regl, whilst leaving the register unchanged

cpse regl, reg2 {-1
- compares the numbers in regl and reg2, skipping the next instruction if they
are equal 4

dec ° reg [SVNZ]
- decrements (subtracts one from) a register, leaving the result in the register

|
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eor regl, reg2 [SVNZ]
- exclusive ORs the number in regl with the number in reg2, leaving the result
in regl

icall ]
- (Not for 1200 and Tiny AVRs) — (indirectly) calls a subroutine with address
given by Z

ijmp ]
- (Not for 1200 and Tiny AVRs) — (indirectly) jumps to the address given by Z

in reg, ioreg I
- copies the number in an /O register into a working register

inc reg
- increments (adds one to) a register, leaving the result in the register

[SVNZ]

jmp label -1
- (Only for Mega AVRs) — jumps to the section called by label. whnch can be
anywhere in the program

Id reg. longreg i
- loads the memory location pointed to by longreg into a register (reg)

Id reg, longreg+ I
- (Not for 1200 and Tiny AVRs) — loads the memory location pointed to by
* longreg into reg, and then adds one to longreg

Id reg, -longreg ]
- (Not for 1200 and Tiny AVRs) — subtracts one from longreg. and then loads
the memory location pointed to by longreg into reg

ldd reg, longreg+number -
- (Not for 1200 and Tiny AVRs) — loads the memory location pointed to by the
Y or Z registers into reg, and then adds a number (0-63) to longreg (Noze:

doesn’t work with X)

1di hreg, number -
- loads a number (0-255) into an upper-half register (16-31)
lds reg, number ' {1

- (Not Jor 1200 and Tiny AVRs) — loads the contents of memory at address
(number) registers into reg, where number can be between 0 and 65 535 (i.e. up

to 64K)

R

Appéndzx D. mstructzon glossary 161

Ipm [-]
- (Not for 1200) — loads into RO the contents of the program memory at the
address specified by the Z register

Isl reg [SVYNZC]
- ‘logically’ shifts all the bits in reg to the left (bit 7 goes into Carry flag, bit 0
1s 0)

Isr reg [SVNZC]
- ‘logically’ shifts all the bits in reg to the right (bit 0 goes into Carry flag, bit
7 15.0)

mov regl, reg2 i-1
- copies (moves) the number in reg2 into regl
neg reg [HSVNZC)
- makes the number in a register negative (20 becomes -20, equivalent to 236)

nop 3
- this stands for no operation, literally *do nothing” — good for wasting a clock
cycle

or regl, reg2 ISVNZ]
- inclusive ORs the number in regl with the number in re02 leaving thc result
n regl

ori hreg, number [SVNZ]
- inclusive ORs a number (0-255) with the number in an upper-half register,
leaving the result in that register

out ioreg, reg [-1
- copies the number in a working register out to an 1/O register

pop reg (-]
- (Net for 1200 and Tiny AVRs) — pops the top of the stack into a register

push reg [
- (Not for 1200 and Tiny AVRs) — pushes the contents of a register onto the stack

rcall  label A [
- calls the subroutine labeled by label, which must be not further than 2048
instructions from the rjmp instructions (i.e. a relative call)
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ret -1
- returns from a subroutine (executes the line after the original call instruction)

e

reti i
i1t3
- returns from a subroutine, and sets the mterrupt flag

rjmp label -]
- jumps to a part of the program labeled by label, which must be not further
than 2048 instructions from the rjmp instructions (i.e a relative jump).

rol reg [SVNZCh
- rotates all the bits in reg to the left (C flag goes into bit 0, bit 7 goes into C
Flag)

ror reg [SVNZC]
- rotates all the bits in reg to the right (C flag goes into bit 7, bit 0 goes into C
flag)

sbe regl, reg2 [HSVNZC
- subtracts the number in reg2 and the carry bit from regl . leaving the result
in regl

sbei hreg, number [HSVNZC]
- subtracts a number (0~255) and the carry bit from the number in an upper-
half register, leaving the result in that register

sbi lioreg, bit [
- sets (makes 1) a bit in one of the lower-half /O registers (0-31)

[T

shic lioreg, bit . [

]
- tests a bit in a lower-half I/O register (0-31), and skips the next instruction if
1s clear

sbis lioreg, bit {-]
- tests a bit in a lower-half VO register (0-31), and skips the next instruction if
1S set

sbiw longreg, number [SVNZCY
- (Not for 1200 and Tiny AVRs) - subtracts a number between 0 and 63 from
one of the 16-bit ‘long’ registers (X, Y, Z)

sbr reg, binary , [SVNZ]
- sets some bits in a register, according to the 8-bit binary number in which a
1 means ‘set this bit’ and a 0 means ‘leave this bit alone’
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sbre reg, bit [-1
- tests a bit in a register, and skips the next instruction if is clear

sbrs reg, bit -3
- tests a bit in a register, and skips the next instruction if is set

sec - sets Carry Flag Y
seh - sets Half Carry Flag [H}
sei - sets Interrupt Flag n
sen - sets Negative Flag [N]
ser reg ' [-]

- sets a register (moves 255 / SFF / 0b11111111 into it)

ses - sets Sign Flag [S]
set - sets T Bit M
sev - sets Overflow Flag V]
sez - sets Zero Flag VA
sleep (-]

- sends the chip to sleep. a low-power mode (woken up through reset or interrupt)

st reg, longreg [-]
- stores the number in a register (reg) to the memory location pointed to by
longreg

st reg, longreg+ [-]
- (Not for 1200 and Tiny AVRs) - stores the number in reg to the memory loca-
tion pointed to by longreg, and then adds one to longreg

- (Not for 1200 and Tiny AVRs) - subtracts one from longreg, and then stores
the number that’s in reg to the memory location pointed to by longreg

st reg, -longreg [-]

std reg, longreg+number [-1

- (Not for 1200 and Tiny AVRs) - stores the number in reg to the memory loca-

tion pointed to by the Y or Z registers, and then adds a number (0-63) to
longreg (Note: doesn 't work with X)

sts reg, number A [-]
- (Not for 1200 and Tznv AVRs) - stores the number in reg at memory address
(number), where number can be between 0 and 65535 {i.e. up to 64K)
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sub regl, reg2 [HSVNZ(Y
- subtracts the number in reg2 from the number in regl, leaving the result in reg]

subi hreg, number- [HSVNZC
- subtracts a number (0—255) from the number in an upper-half register,
leaving the result in that register

swap reg [SVNZC1
- swaps the upper and lower nibbles of a register, leaving the result in the
register

tst reg [SVNZ
- tests to see if the number in a register is 0 by ANDing it with itself (leaving
the register unchanged). The zero flag must then be tested using breq or brne to
complete the test

wdr i-
- resets the watchdog timer (must be done at regular intervals to avoid reset)

[
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Appendix F
Hex conversion

Appendix G
ASCII conversion

LSS QRETNEBRESRIE
T39YR2EYBNBENED
°2esrh388T6R8855 8
VRIBLYBITBNEZIRIB D
TR23R5;S88BEBETER
QYN ENBEREETI
>QTHR38aBB88558¢%
0T BNBSIB583E2T
~RB8RE8780B8820 Y
cNBTIRYETIZERIIEY
nE5B385EB28552]8
~R8YBIEZRIEREIRF
©285588r8S8RETNY
N2IREURTBLERIZRY
~r828s5 % R8383
c2y2IETEIBREELS
OraNmMeTBBONDSDOLCDOQO WL

0

1

2 3 4 5

6

7 8 9

A B C D E F

0 |NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO Si
1 |DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 (SP v v s % & ()t s -y
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H | J K L M N o]
s|/P @ R S T U V W X Y z [ \ 1 ~ _
6 ' a b c d e f o h ! i k | m n o
7 p q r s t u v w X y 2z { | } ~ DEL
eg. ‘T =0x54

NUL (500):  null DLE (S10):  data link escape

SOH (801):  start of heading DCI1 (S11):  device control 1

STX (802):  start of 1ext DC2(S12):  device control 2

ETX (503): end of text DC3 ($13):  device control 3

EOT (504):  end of transmission DC4 (S14):  device control 4

ENQ (S05):  enquiry NAK (S13):  negative acknowledge

ACK (806): acknowledge SYN (S16):  synchronous idle

BEL (507):  bell ETB (S17):  end of transmission block

BS ($08): backspace CAN (818):  cancel

TAB (809). horizontal tab EM (§19): end of medium

LF (30A): line feed SUB ($1A): substitute

NL ($0A): new line ESC($1B):  escape

VT ($0B): vertical tab FS (S1C): file separator

FF ($0C): form feed GS ($1D):  group separator

NP ($0C):  new page RS (S1E): record separator

CR (80D):  carriage return US (S1F): unit separator

SO ($0E): shift out

SI (SOF): shift in

.

S




Appendix H
When all else fails, read this

You should find that there are certain mistakes which you make time and time
again (I do!). I've listed some popular ones here :

Have you put a colon after your labels, i.e. start: and not start?

Have you tried to use sbi, cbi, sbis or sbic with 170 registers $20-S3F?
Are you remembering 1o reset counting registers?

Have you set registers to correct initial values in init?

Have you remembered that on Tiny10 and Tiny11, PBS is input only?
Have you set up the stack pointer (SPL/SPH) if necessary?

Are you writing/reading 2-byte registers such as TCNTIH,L in the
correct order? : ’

If you are having a total nightmare and NOTHING is working ... have you
specified the correct AVR at the top?

B R A AR

Appendix |
Contacts and further reading

John Morton: help@to-pic.com
ATMEL website: http://www.atmel.com

Kihnel, Claus (1998) AFR RISC Microcontroller Handbook, Newnes
(gives more details of the inner architecture of AVRs)

Brimicombe. M.W. (1983) Electronic Svstems. Nelson
(great text for general electronics)

Some fun AVR projects: http:/swww.riccibitti.com/designs.htm

Random numbers: http://www.physics.carleton.ca/courses/75.502/slides/
montel2:




Appendix J
Sample programs

Program A - LEDon
;*************************************
; written by: John Morton
: date:  5/2/2002

; version: 1.0

; file saved as: LEDon.asm
; for AVR: 1200

; clock frequency: 4MHz

B R r e a2t 2R L A gt bt
*

* % ¥ ¥ ¥ ¥

; Program Function: Turns an LED on

.device  at90s1200

.nolist

.include “C:\Program Files\Atmel\AVR Studio\Appnotes\1200def.inc”
Jist

. ; Declarations:

.def temp =ri6

«

; Start of Program

rjmp Init ; first line executed

init: ser  temp
out DDRB, temp
out DDRD, temp

; PBO - output, rest N/C
; PD0-7 all N/C

temp ; all Port B outputs off
PortB, temp ;

b
PortD, temp ; all Port D N/C

Program 5 :'T’Sé;)}zple programs 171

bl

Start:
sbi PortB, 0 ; turns on LED
rjmp Start

; loops back to Start

Program B - Push Button
;*************************************
; written by: John Morton
; date:  5/2/2002

: version: 1.0

; file saved as: PushA.asm
; for AVR: 1200

; clock frequency: 4MHz

XA KR IR KR FAAI I A I AXK I A IR hdrFrhdrhhhdkdixk
b

* % ¥ o X %

: Program Function: Turns an LED on when a button is pressed
.device  at90s1200
.nolist

.include “C:\Program Files\Atmel\AVYR Studio\Appnotes\1200def.inc”
Jdist

; Declarations:

.def temp =rl6

3

; Start of Program

rjmp Init ; first line executed

Init: ser  temp ; PBO - output, rest N/C

out DDRB, temp :

Idi temp, 0b11111110 ; PDO - input, rest N/C
out DDRD, temp H

cr  temp ; all Port B outputs"o‘t’”f
out  PortB, temp ; o
Idi temp, 0000000001 ; PDO - pull-up, rest N/C
out  PortD, temp 3




172 Program C: Sample programs

Start:
sbis PinD, 0
rjmp LEDoff

; tests push button
; goes-to LEDoff

sbi  PortB, 0 ; turns on LED

rjmp Start ; loops back to Start
LEDoff:

cbi  PortB, 0 ; turns off LED

rjmp Start ; loops back to start

Program C - Push Button

ek dkkkhkdhrkkxkkhkkdrrrdkdrhhhkdhhkdrhrkx
.

: written by: John Morton

. date: 5/2/2002 *
; version: 2.0 *
: file saved as: PushB.asm *
; for AVR: 1200 .

: clock frequency: 4MHz

fEFIHKA AT I Ik xhkhkkkdhkrhkhxirkhkhkkrkdkkid
\

; Program Function: Turns an LED on when. a button is pressed

.device  at90s1200

.nolist

.include “C:\Program Files\AtmeNAVR Studio\Appnotes\1200def.inc”
dist

.
-

; Declarations:

.def temp =r16

*

; Start of Program

rjmp Init ; first line executed

b
Init: ser

temp ; PBO - output, rest N/C
out DDRB, temp ;3 -
ldi  temp, 0b11111110 ; PDO - input, rest N/C
~.out . DDRD, temp .

P

m,_ﬂﬂﬁfzgw
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.

clr temp
out  PortB, temp
ldi temp, 0b00000001
out  PortD, temp

Start:
in temp, PinD
out PortB, temp
‘Tjmp Start

Program D - Counter

ekkkkhkdkkkhhkdhhdhddhdhhhhkhhkddhhkhrkxd

; written by: John Morton
; date:  7/2/2002

; version: 1.0

; file saved as: counter.asm
; for AVR: 1200

: clock frequency: 4MHz

ehkkhk kR Fxh* I T hdhddhhhkkkrrdhdhhhkhdkkdk
L)

; Program Function: Counts the number of times a button is pressed (0-9)

.device at90s1200
.nolist
.include

Jist

3
3

; Declarations:

=r16
=r17

.def temp
.def Counter

b
; Start of Program

rjmp Init

Init: ser temp
out DDRB, temp
ldi  temp, 0b11111110
out DDRD, temp

“C:\Program Files\Atmel\AVR Studio\Appnotes\1200def.inc”

c 9

; all Port B outputs off

5
; PDO - pull-up, rest N/C

.
9

; reads button
; controls LED
; loops back

* % % ¥ F %

; first line executed

;
A

5 PBO0-7: outputs
; PDO: input, rest N/C

.

" .
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Idi R20,0b01111110 ; initial code for a 0

out PortB, temp H

Idi  temp, 0b00000001 ; PDO - pull-up, rest N/C
out PortD, temp ; %

Ildi R21,0b00110000 ; code foral
ldi R22,0b01101101 ; code for a2
Idi  R23,0b01111001 ; etc.

Idi  R24,0b00110011 ;

i ldi  R25,0b01011011 ;

ldi  R26,0b01011111 ;

i ldi  R27,0b01110000 ;

; ldi  R28,0b01111111 ;

Idi  R29,0b01111011 ; codefora9

cir  Counter ; Counter initially 0
{ start:sbic PinD, 0 ~; button pressed?
rimp Start ; no, so keeps looping
inc  Counter ; ves, so adds 1 to Counter
cpi  Counter, 10 ; is Counter = 10?
brne PC+2 ; no, so skips
cir  Counter ; ves, so resets Counter
Idi ZL,20 ; zeros ZL to R20
add ZL, Counter ; adds Counter to ZL
Id temp, Z ; reads Rx into temp
| out PortB, temp ; outputs temp to Port B
! rjmp Start ; loops back to Start

2rogram E - Counter v. 2.0
ckkRkkFhkhkhkk kT hkkkhdhkkkhhhhhkwr ik hkkddhx
written by: John Morton
date:  7/2/2002
version: 2.0
file saved as: counter.asm
for AVR: 1200
- clock frequency: 4MHz

e gk e o e e de v e e de e e e o e ok ok ok e v o b b o e e e e ek ek ke
o]

* % ¥ ¥ ¥ X

Program Function: Counts the number of times a button is pressed (0-9)

T
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.device at90s1200 . _ i

.nolist

dnclude “C:\Program Files\Atmel\AVR Studio\Appnotes\1200def.inc”

Jist

.
)

.def temp

; Declarations:

=rl16

.def Counter =r17

3
; Start of Program

rjmp Init
Init: ser temp
out DDRB, temp
Idi  temp,0b11111110
out DDRD, temp
ldi  R20,0b01111110
out PortB, temp
ldi  temp, 0b00000001
out PortD, temp
Idi  R21, 0b00110000
Idi  R22,0b01101101
Idi R23,0b01111001
Idi  R24,0b00110011
ldi  R25,0b01011011
Idi R26,0b01011111
ldi  R27,0b01110000
ldi  R28,0b01111111
ldi  R29,0b01111011
cir  Counter
Start:sbic PinD, 0
rjmp Start
inc  Counter
cpi  Counter, 10
brne PC+2 .

S

; first line executed

; PB0-7: outputs
; PDO: input, rest N/C

b

; initial code for a 0
; PDO - pull-up, rest N/C

b

; code for a 1
; code for a2
; etc.

.
b
bl
b
2

; code fora 9
; starts with a 0

; button pressed? J
3 no, so keeps looping
; yes, so adds 1 to Countgr

; is Counter = 10?
no, so skips

.
b
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clr  Counter ; ves, so resets Counter

Idi ZL,20 ; zeros ZL to R20

add ZL, Counter ; adds digit to ZL

ld  temp,Z ; reads Rx into temp

out PortB, temp ; outputs temp to Port B
ReleaseWait:

sbis PinD, 0 ; button released?

rjmp ReleaseWait ; no, so keeps looping

rjmp Start ; ves, so loops back to start

Program F - Chaser
:*************************************
: written by: John Morton
: date:  7/2/2002

. version: 1.0

: file saved as: chaser.asm
: for AVR: 1200

: clock frequency: 2.4576MHz *
:********************v‘r****************

L S S

,  : Program Function: Chases a pattern of LEDs at varving speeds

.device  at90s1200

.nolist

“.include “C:\Program Files\Atmel\AVR Studio\Appnotes\1200def.inc”
ist

: Declarations:

.def temp =r16
.def Mark240 =r17
.def Counter =rl18
.def Speed =r19

; Start of Program

rjmp - Init ; first line executed

.
4

_ Init: ser temp ; PB0-7: outputs

rysev—
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; PDG0, 1 - input, rest N/C

; initially just PB0 on

; PDO, 1 - pull-ups, rest N/C

; sets up timer to count at CK/1024

; checks down button

; not pressed, jumps

; slows down time

: has Speed reached 117

; jumps to ReleaseDown if not equal
; subtracts one from Speed

; waits for down button to be released

; not pressed, jumps

; speeds up time

; jumps to Timer if not 0
; adds one to Speed

; waits for up button to be released

; reads Timer 0 into temp
; compares temp with Mark240
; if not equal loops back to Timer

; adds 240 to Mark240
; subtracts one from Counter

out DDRB, temp 5
ldi  temp, 0b11111100
out DDRD, temp 5
ldi.  temp, 0b00000001
out PortB, temp
ldi  temp, 0b00000011
out PortD, temp H
Idi  temp, 0000000101
out TCCRO, temp :
Idi  Mark240, 240 ;
idi Counter, 5 ;
Idi Speed, 5 :
Start: sbic  PinD, 0
rjmp UpTest
inc  Speed
cpi  Speed. 11
brne ReleaseDown
dec  Speed
ReleaseDown:
sbis PinD, 0
rjmp ReleaseDown ;
UpTest:
sbic PinD,1 ; checksup button
rjmp Timer
dec  Speed
brne ReleaseUp
inc  Speed
ReleaseUp:
sbis PinD, 0
rimp ReleaseUp
Timer:
in temp, TCNTO
cp temp, Mark240
brne Timer
subi Mark240, -240
dec  Counter
brne

Start

; if not zero loops back to Star;

*
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; set time has passed, rotates LEDs Debounce:
Idi  Delay1, 0x80 ; sets up counting registers
mov Counter, Speed ; resets Counter Idi  Delay2, 0x38 ;
ldi  Delay3, 0x01 H
in temp, PortB ; reads in current state
Isl temp ; rotates to the left - Loop:
brce PC+2 ; checks Carry Flag, skip if clear subi Delavl. 1 ; inserts delay
idi  temp, 0b00000001 ; resets to PBO on, others off sbei  Delay2. 0 ;
sbei Delay3, 0 H
out PortB, temp ; outputs to PortB bree Loop :
rimp Start : loops back to Start ret ; returns from subroutine
Program G - Counter v. 3.0 Init: ser temp ; PB0-7: outputs
;************************************* out DDRB‘ temp ;
; written by: John Morton ¥ | Idi  temp.0b11111110 ; PDO: input, rest N/C
5 date: 9/2/2002 * out DDRD. terap :
. ; version: 3.0 *
| : file saved as: counter.asm * ldi ~ R20,06b01111110 : initial code fora 0
[ & for AVR: 1200 * out  PortB. temp :
; clock frequency: 4MHz * ldi  temp, 0600000001 : PDO - pull-up, rest N/C
;***********7‘:*!‘:*********************** Out POF[’D. temp
; Program Function: Counts the number of times a button is pressed (0-9) Idi R21, 0b00110000 ; code for a1
Idi R22,0b01101101 ; code for a 2
.device at90s1200 ’ idi R23,0b01111001 ; etc.
. .nolist ldi R4, 0000110011 ;
.include “C:\Program Files\Atme\AVR Studio\Appnotes\1200def.inc” idi R25, 0001011011
Jist Idi ~ R26,0b01011111
. ldi ~ R27,0b01110000 ;
e Idi  R28,0b01111111
; Declarations: ldi  R29,0b01111011 ; code for a 9
cir  Counter ; Counter initially 0
.def temp =r16
.def Counter =r17 :
.def Delayl =rl6 . - Start:sbic  PinD, 0 ; button pressed?
-def Delay2  =r18 M/ rjmp Start ; no. so Keeps looping
.def Delayd =rl19 2 inc  Counter ; ves, so adds 1 to Counter
R cpi  Counter, 10 ; is Counter = 16? :
; Start of Program brne PC+2 ; no, so skips '
cir  Counter ; yes, so resets Counter

rjmp Init ; first line executed . , : !
DS Idi ZL,20 ; zeros ZL to R20 _
utines . . . add. ZL, digit ; adds digit to ZL *

£ "
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Id temp,Z : reads Rx into temp ;
out PortB, temp ; outputs temp to Port B ; Subroutines:
rcall Debounce ; inserts required delay HalfSecond:
ReleaseWait: clr Delay1 ; sets up counting registers
sbis PinD, 0 : button released? ldi  Delay2, 0xC0 ;
rjmp Release Wait ; no, so keeps looping ldi  Delay3, 0x03 ;
rcall Debounce : inserts required delay
rjmp Start : ves, so loops back to start HalfLoop:
subi Delayl, 1 ; inserts delay
sbei Delay2,0 ;
Program H - Traffic lights sbci Delay3, 0 ;
;************************************* bree Halﬂ_,oop 3
; written by: John Morton * ret ;
; date:  7/2/2002 *
: version: 1.0 * =
; file saved as: traffic.asm * Timer:
: for AVR: 1200 * ‘ brts PC+2 : test T bit, skip if set
: clock frequency: 2.4576MHz * ret sreturns if T is clear
:********************7’:*****1‘:**********
: in temp. TCNTO : reads Timer 0 into temp
: Program Function: Simulates a pedestrians crossing cpse  temp. Mark240 1 compares temp with Mark240
ret : if not equal returns
.device  at90s1200 subi Mark240, -240 : adds 240 to Mark240
“nolist dec  Count250 : subtracts one from Count250.
.include “C:\Program Files\Atme\AVR Studio\Appnoies\1200def.inc” . breq PC+2 ; if zero, skips
- Llist ret ; if not zero returns
. ) Idi Count250, 250 ; resets Count250
: Declarations: ' clt ; clears T bit
’ ret ‘ :
.def temp =r16
. ter =rl17 . '
def Counter _rl/ Init: ser temp : PB0-5: outputs, rest N/C
-def tog =r18 out DDRB, temp ;
-def Delayl — =r19 | ldi  temp, 0b11111110 ; PDO - input, rest N/C
.def Delay2 =120 out DDRD. te ’
.def Delayd =r2l > temp >
=r22 .
'geif ](‘:43“‘324_00 o2 idi  temp, 0b00000001 ; PDO - pull-up, rest N/C
.def Count250 =r out  PortD, temp ; e
; ’ i Idi temp, 0b00000101 ; sets up timer to count at |
‘ ; Start of Program : . out TCCRO, temp ;  CK/1024
L v rjmp Init ; first line executed ] i i Mark240,240
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Idi Count250, 250
clt : clears T bit

Start:ldi  temp, 0b00010001 ; motorists: green

out PortB, temp ; pedestrians: temp

rcall Timer ; keeps timing

sbic PinD, 0 ; tests button

rjmp Start : not pressed

sbi  PortB,5S : turns on WAIT light
Loop:

rcall Timer ; keeps timing

brts Loop ; stays in loop until T is clear

sbi  PortB, 1 ; motor amber on

cbi  PortB, 0 ; motor green off

Idi  temp, 8 : 4 second delay
FourSeconds:

rcall HalfSecond

dec temp :

brne FourSeconds ;

ldi  temp, 0b006G1100 ; motorists: red

out PortB, temp ; pedestrians: green

Idi  temp, 16 ; 8 second delay
EightSeconds:

rcall HalfSecond ;

dec temp H

brne EightSeconds

ldi  tog, 0b00001010 ; motorists: amber

out PortB, tog ; pedestrians: green

Idi  Counter, 8 ; sets up Counter register
FlashLoop:

rcall HalfSecond "5 waits % a second

in temp, PinB ; reads in state of lights

eor temp, tog ; toggles

out PortB, temp ; outputs

dec Counter s does this 8 times

brne FlashLoop H
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set ; sets T bit
rjmp Start ; loops back to Start

Program | - Logic Gates
:*************************************
; written by: John Morton

; date:  9/2/2002

; version: 1.0

; file saved as: logic.asm

; for AVR: Tiny12

; clock frequency: 2.4576MHz

;*************************************

L I B

; Program Function: Simulates AND, NAND, IOR, NOR, XOR, XNOR,
; NOT and buffer gates

.device  atTiny12
.nolist

.nclude “C:\Program Files\AtmeNAVR Studio\Appnotes\tn12def.inc™
Jist

3

; Declarations:

.def temp =r16

b

; Start of Program

. rjmp Init ; first line executed

; Lookup Table:

.dw 0b0000000100010011 ; code for AND and IOR
.dw 0b0011001000100000 s NAND and NOR

.dw 0b0010000100010010 ; ENOR and EOR

.dw  0b0011000000000011 ; NOT and buffer 2

Init: ldi temp, 00000001  ; PBO: output, rest inbuts
out DDRB, temp 3 '
ldi  temp, 0b111110 ; PB1-5: pull

ps

mw s
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out PortB, temp ; PBO initially off .def lowerbyte =r19 ‘

.def upperbyte =r20 3
Start:in ZL, PinB ; reads in PinB .def DisplayCounter  =r21l

andi ZL,0b001110 ; masks 0,4 and 5 .def DisplayNumber  =r22

Isr ZL ; rotates ’

subi ZL,-2 ; adds 2 to ZL .def Delavl =r23

Ipm ; reads lookup table into R0 .def Delay2 =r24
.def Delay3 =r25

sbis PinB, 4 ; tests Input A

swap RO ; swaps nibbles if low .def Hundreds =r26

sbis PinB, 5 ; tests Input B .def Tens =r27

ror RO ; rotates right if low .def Ones =r28

mov temp, RO ; copies RO to temp .def store =r9

ori temp, 0b11110 ; forces bits 1-4 high _.def store2 =r19

out PortB, temp ; outputs result .def Counter =r20

rjmp Start ; loops back to Start

: RO-R12 are for display
Program J - Frequency Counter

kIR I I AT TR IR A IRk bk drdhdrhhdrrdkid
-

; written by: John Morton * : Reset Table
; date:  14/02/02 * .
: version: 1.0 * rjmp - Init : calls initialization subroutine
; file saved as Frequency *

- 3 for AT90s8515 *
; clock frequency: 4MHz * I ;
;************************************* ; lnitia“zation
; Program Function: To display the frequency of the input on 3 seven - § Init: ser temp : PBO LED for Hz / kHz
; segment displays out DDRB, temp : PB1-7 are seven segment display
.device at90s1200 ildi  temp,0b11101111 ; PDO-2 choose 2 display
-nolist out DDRD. temp ; PD4 input, rest N/C
.include “C:\Program Files\AtmeNAVR Studio\Appnotes\1200def.inc” '
list cir temp ; no pull-ups

out PORTB, temp ; all outputs off

; Declarations ldi  temp, 0b00000001 ; starts by selecting oné

out PORTD, temp ; all outputs off
.def temp =rl6

.def temp2 =r17

ldi  temp, 0b00001110 ; watchdog barks every second
.def temp3  =rl8

out - WDTCR, temp H

A
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Program J: Sampt&programs 18/

Idi  temp, 0b00110000
out MCUCR, temp
Idi  Hundreds, 12
Idi  Tens, 12
Idi Ones, 12
cir ZH
ldi  DisplayCounter, 50
cir  DisplayNumber
Idi - temp,0b11111160
mov RO, temp
ldi  temp, 0b01100000
-mov Rl temp
ldi  temp, 0b11011010
mov R2, temp
ldi  temp,0b11110010
mov  R3, temp
Idi  temp, 0b01100110
mov R4, temp
ldi  temp,0b10110110
mov RS, temp
idi  temp, 0bi0111110
mov  R6, temp
ldi  temp, 0b11100000
mov R7, temp
ldi  temp,0b11111110
mov RS, temp
ldi  temp, 0b11110110
mov  RY, temp -
Idi temp, 0b01101110
mov R10, temp
Idi  temp, 0b00000010
mov R11, temp
rimp Start

; Display Subroutine

Display:
dec  DisplayCounter
breq PC+2
ret

; enables deep sleep function

.
b

; makes sure higher byte of Z is clear

; changes display every 50 visits

s we w

wdr
1di

inc
cpi
brne
clr

Idi
add
Id
cir
add
1d
sbic
ori

out

in
Isl
sbre
Idi
out

ret

DisplayCounter, 50

DisplayNumber
DisplayNumber,3
PC+2
DisplayNumber

ZL,26

ZL, DisplayNumber
temp, Z

ZL

ZL, temp

temp, Z

PortB, 7

temp, 0010000000

PortB, temp

temp, PinD

temp

temp, 3

temp, 0000000001
PortD, temp

; pats the dog

3

we we we we

. zeros ZL to R25

; copies number to convert into temp
; zeros ZL to R0

; adds temp to ZL

; reads Rx into temp

; tests kHz LED

: if it’s on, keeps it on

; outputs temp to Port B

’ . . .
; Converts 4 digit hex answer into three decimal digits

DigitConvert:
cir  Hundreds
cir  Tens
cir  Ones
FindHundreds:
subi lowerbyte, 100
sbci  upperbyte, 0
bres FindTens
inc  Hundreds

rjmp FindHundreds

% FindTens:
subi

lowerbyte, -100

ST TN P s w4
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subi lowerbyte, 10 H nop 3
bres FindOnes _ rjmp HighSpeed H
inc  Tens
rjmp FindTens+1 DoneHi: ,
. - in lowerbyte, TCNT0 ; immediately stores TCNTO value
Fmenes‘: cp lowerbyte, temp  ; compares with previous value
subi lowerbyte, -10 ; adds back the last 10 brsh PC+2 ;
mov  ones, lowerbyte ; number left in lowerbyte = ones inc upperbyte :
ret ; finished _ cpi  upperbyte, OXFA 3
breq TooHigh H
H Divide64:
1di temp, 6 H
; PROGRAM START Isr uppFe)rbvte H
ror lowerbyte :
i N : . dec temp :
; high speed counting for frequencies more than 1kHz brne Divide64+1 :
Start::g: ge:a_\t‘l,, 00 : - cpi up'perbyte,o : higher byte 07
i elay2, 0x7D : brne PC+3 : skips next 2 instructions
a ;)Cmp. 0b10000000 ; resets displays and turns on kHz LED cpi  lowerbyte, 0 : lower byte 07
ortB, temp 3 breq LowSpeed : if frequency less than 1kHz we should

Idi use lower frequency mode
temp, 0b00000111 ; sets TCNTO to count rising edge

out TCCRO,temp  ; onTO0 (PD4) | rcall DigitConvert ;

clr upperbyte Uls s

o TCNTO, upperbyte Idi  Delayl, 0x2A ; -

o temp ICNTO ldi  Delay2, 0xC6 |
HighSpe;d; Ha]fsﬁiond- Delay3, 0x01 ;

:gc; g:::{é:lo ; counts for 0.064 seconds rcall Display : calls display for half a second

bres  DoneHi ’ subi Delayl, 1 :

sbei  Delay2, 0

mov  temp2, tem
P sbei  Delay3, 0

2o we ws e

in temp, TCNT0 :
cp temp, temp2 b‘rcc HalfSecond H
brsh HighSpeed .8 eveles - rjmp Start :
inc  upperbyte . TooHigh:
cpi  upperbyte, 0XFA . . Idi  Hundreds, 11 H
breq TooHigh ’ ; t0o high? ldi  Tens, 10 ; 7
“Delay : ' ldi  Ones,1 ;
- rjmp HalfSecond-3 H
]

T
]
e
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brne LowLoop

: low speed counting-for frequencies less than 1kHz
ldi  temp, 0xOF

LowSpeed: ldi  temp2, 0x00
Idi  temp, 000000001 ; sets TCNTO to count at CK cpi  Delayl, 0xA0 H
out TCCRO, temp ; . cpc  Delay2, temp ;
cir  Delay2 ; cpc  Delay3, temp2 ; .
clr  Delay3 ; bres Start ; ves, so goes to HighSpeed
cbi  PortB, 7 ; clears PortB, 7 to turn on Hz LED
Idi temp, 0x00
in store, PinD ; stores initial value Idi  temp2, 0x09
. FirstChange: Idi  temp3, 0x3D
recall Display ; keeps displays going cir  lowerbyte
in store2, PinD : cir  upperbyte
eor  store2, store ; compares with current value
andi store2, 0b00010000 ; ignores all bits except PD4 Divide:
breq FirstChange ; keeps looping until PD4 changes sub temp, Delayl
sbc  temp2, Delay2
| ldi  Counter, 2 ; sets up Counter to 2 : sbc  temp3, Del?.\'3
} cir temp2 ; resets Timer0 bres DoneDividing
| out TCNTO, temp2 ; inc  lowerbyte :
5 brne Divide
in store, PinD ; stores initial value inc  upperbyte
LowLoop: rjmp Divide
in store2, PinD ;
r eor - store2, store ; compares with current value DoneDividing:
. andi store2, 0b0001006G ; ignores all bits except PD4 rcall DigitConvert
brne Change ; jumps to Change if PD4 changes rjmp LowSpeed
‘ rcall Display ; keeps display going TooSlow: .
‘ : out PortD, temp ; turns off Display
’ mov temp2, Delayl ; sleep
in Delayl, TCNTO : rjmp LowSpeed
cp Delayl, temp2
brsh  LowLoop X Program K - Reaction Tester
Inc Delay?. ; e e e e e e e e e 9 e e S e ok ok o e e e e e e ek e e ek
ibnrcne 1];2;:%; op ; ‘ ; written by: John Morton :
- . ’ : ; date:  25/2/02
cpi  Delay3, 0x3E ; too slow? ? - *
breq TooSlow : ; version: 1.0 . don.asm . .
rjmp LowLoop ; file saved as: reaction. N P
: , ; for AVR: 1200 M . :
z . : equency: 4MHz
vhangi: store, PortB ; updates new value ;::gil:::*g****;***********************
bl b
dec  Counter ;

L4 .
5 : tion Tester
; Program Fup,ctmn. Reac )

&

l‘

pe—soem
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.device  at90s1200 mov  temp, TimeL ; byfive
.nolist mov tempH, TimeH ;
Jdnclude  “C:\Program Files\Atmel\AVR Studio\Appnotes\1200def.inc” Times5:
Jist : add temp, TimeL 5
ade tempH, TimeH 3
e dec Countd 5
; Declarations: brne TimesS 5
| .gef temp =r16 cir  TimeL H
- .def Random =r}7 ey cir TimeH
| .def Five =ri8 . Dividel2:
‘z .def TimeL » =r19 \E subi temp. 12 ;
* .def TimeH =r20 N sbei  tempH, 0 5
, .def Hundreds =r21 '3 e bres DoneDividing
¢ .def Tens =r22 = — inc  TimeL }
' .def Ones =r23 a g B brae Dividel2 ;
.def CountX =r24 | ) inc  TimeH ;
.def DisplayNumber =r25 ; . j rjmp Dividel2 5
.def DisplavCounter =r26 £ :
def tempH =27 7 i DoneDividing:
=r2 s ree igi ert d
el Countd o T :z?“ pietcome : returns DOESN'T enable interrupts
: Start of Program Cheat:
1di Hundreds, 10 ; b
rjmp Init ; first line executed : : Idi  Tens, 11 ;/;
rimp Extint 3 i nes, 12 3 )
r;mg TCNTOInt : :ilt © ; returns and DOESN’T enable interrupts
Extint: TCNTOInt:
sbis PinD, 0 ; tests LED sbic PinD. 0 ; tests LED
rjmp Cheat : rjmp Tint_LEDon 3
cir  temp ; stops TCNTO dec  CountX :
out TCCRY 5 breq PCs2 5
in TimeL, TCNTO ; reads in TCNTO value reti
in temp, TIFR ; test for TCNTO overflow ldi  temp, OxA2 ;
sbrc  temp, 1 ; A out TCNTO, temp ;
inc  TimeH ; sbi  PortD, 0 ; turns on LED
subi TimeL, 0xA2 ; subtracts back 0xA2 from reti 5 ;
sbei  TimeH,0 ; total reaction time » +
Idi  temp, 0b00000101 ; restarts TCNTO at CK/1024 TInt_Ledon: . _
out TCCRO, temp 3 ‘ inc TimeH ; increments hfgher b)_/te
v cpi  TimeH, 0x0A ; tests for maximum time
Count4, 4 . s Multiplies reaction time f breq PC+2 ; skips if too slow
.- p i ¥
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reti

1di Hundreds, 13
Idi Tens, 14

Jdi  Ones, 1

ret

Display Subroutine

Display:
dec  DisplayCounter
breq PC+2
ret
wdr

Idi DisplavCounter, 50

inc  DisplayNumber
cpi  DisplayNumber,3
brne PC+2

cir  DisplavNumber

ldi  ZL.21

add ZL, DisplavNumber ;
d temp, Z

ldi  ZL,0

add ZL,temp

id temp, Z

out  PortB, temp

brtc PC+2
sbi  PortB, 0

in temp, PinD

Isl temp

bres PC+2

ldi  temp, 0b00100000
ori  temp, 0b00000110
out  PortD, temp

ret

e e e
o

; changes display every 50 visits

)
; pats the dog

.
k)

3
.
b
3

.
b}

; zeros ZL to R21

; copies number to convert into temp
; zeros ZL to RO

; adds temp to ZL

; reads Rx into temp

; outputs temp to Port B

3 tests T bit
; turns on kHz LED

e e we e

Converts 4 digit hex answer into three decimal digits

. JigitConvert:
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]

clr  Hundreds
clr  Ones
cir Tens

FindHundreds:
subi TimeL, 100
sbei  TimeH, 0
bres FindTens
inc  Hundreds
rjmp FindHundreds

FindTens:

subi TimeL,-100
subi TimeL, 10
bres FindOnes
inc  Tens

rimp FindTens+1

FindOnes:

: adds back the last 10
: number left in lowerbyte = ones
; finished

subi TimeL.-10
mov Ones, TimeL
ret
Init: ldi  temp, 0b11111111

out DDRB, temp
ldi  temp, 0b11111001
out DDRD, temp

ldi  temp, 0b00000000
out PortB. temp
ldi  temp, 000100110
out PortD, temp

ldi  temp, 0b00000101
out TCCRO, temp

Idi temp, 0b00000000
out MCUCR, temp

ldi temp, 0b01000000
out GIMSK, temp

: PB1-7: outputs, PBO: N/C

i PDO0,4-6: outputs, PD3,7: N/C
; PD1,2: inputs

.
b

5
: selects first display, pull-ups
on both buttons

: TCNTO at CK/1024
; INTO interrupt on falling edge
‘.f;v

.
b4

; enables INTO interrupt .

.
b
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Idi  temp,0b10111110 :6
mov  R6. temp

ldi  temp, 0b00000010 ; enables TCNTO interrupt add Random, temp 5
out TIMSK, temp ; add Random, temp H
inc Random ; ---adds 1
Idi  DisplayCounter, 50 ; _
cir  DisplayNumber mov CountX, Random ;
Isr CountX ; divides by 2 and adds 60
ldi  temp,0b11111100 ;0 subi CountX, -60 3
mov RO, temp .
ldi  temp,0b01100000 ;1 ldi  temp, 0b0100000 ; resets INTO interrupt flag
mov RI1, temp out GIFR 3 .
ldi  temp,0b11011010 ;2 ldi  temp, 0b00000010 ; resets TCO overflow interrupt flag |
mov  R2, temp out TIFR ; E |
Idi  temp.0b11110010 ;3 sei ; enables interrupts f
i mov R3, temp cir  TimeH : reset time register ' N
| Idi  temp,0b01100110 ;4 out PortB, TimeH ; also turns off displays while waiting
' mov R4, temp Loopy: . .
j ldi  temp,0b10110110 ;5 brid Start ; skips out when interrupts disabled
§ mov  RS5, temp : - rjmp Loopy ; Loops
!
i temp,0b11100000 ;7 Program L - 4-bit Analogue to Digital Converter
‘ moy R7. temp -*************************************
Idi  temp,0bl11111110 ;8 : written by: John Morton *
mov RS, temp , : date:  25/2/02 *
ldi  temp,0b11110110 ;9 : version: 1.0 ¥
mov RS9, temp : . ; file saved as: atod.asm * j
idi  temp,0b00111110 ;b ; for AVR: 1200 * |
mov  R10, temp : clock frequency: 4MHz *
Idi temp, 0b11101110 ;A .************************************* :
mov R11, temp
Idi  temp, 0b01111010 ;d ; Program Function: 4-bit A-D converter |

mov  R12, temp
.device at90s1200

.nolist I
Main body of program: include “C:\Program Files\Atmel\AVR Studio\Appnotes\1200def.inc’ J
i Jist
start:rcall Display ; keeps display going
sbic PinD, 1 3 waits for Ready button 5
rimp Start ; keeps looping until it’s pressed ; Declarations: N
4
; gets next random number .def temp =r16
_mov temp, Random . ; multiplies by 5 and... g
add Random, temp ;

’

b
add Random, temp s . i; ; Start of Program :




e
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rjmp Init ; first line executed PROGRAM M - Voltage Inverter

P T T T s E L Lt Ak stk
>
*

. . A ; written by: John Morton
Init: ldi  temp, 0b11111100 ; PB0,1: Analogue inputs ; date:  25/2/02 *
out DDRB, temp ;s PD2-7: N/C ; version: 1.0 *
idi  temp, 0b11111111 ; PDO0-3: outputs, PD4-7: N/C : file saved as: inverter.asm *
out DDRD, temp ; § ;for AVR: 1200 *
£ ; clock frequency: 4MHz *
cir  temp S Sk ek kR Rk SRk ek ke ek
out PortB, temp ; '
ldi  temp, 0b00001000 ; selects msb ‘ ; Program Function: Qutputs 5 — (input voltage)
out PortD, temp ;
. .device  atTinyl5
ldi  temp, 0b10000000 ; turns on Analogue comparator .nolist
out ACSR, temp ; .include “C:\Program Files\AtmeNAVR Studio\Appnotes\TniSdef.inc”

Jlist

: Main body of program: : e
; Declarations:

Start:shis ACSR, 5 ; checks AC result

cbi  PortD, 3 ; clears bit 3 .def temp  =rl6
sbi  PortD, 2 ; .def tempH =r17

.def Desired =r18
sbis ACSR, 5 ; checks AC result .def Actual =r19
cbi  PortD, 2 ;3 clears bit 2
sbi  PortD, 1 ; 3

; Start of Program
sbis ACSR, 5 ; checks AC result . . :
cbi  PortD, 1 ; clears bit 1 rjmp Init ; first line executed
sbi  PortD, 0 H

. k)
sbis ACSR, 5 : checks AC result Init: 1di temp, 0b011100 , PB(),I,.S:YInputs
cbi  PortD, 0 ; clears bit 0 out DDRB, temp : PB2-4: N/C
clr  temp ; no pull-ups
in temp, PortD ; read in final answer out  PortB, temp
swap temp s swap ' . . (=
out PortB, temp . outputs lodult rglg,sll){bltgr(‘);()ll ; enables ADC, clock = CK/8
3 . o 1 t ’ ; selects ADCO, VCC as-reference
rjmp Start ; keeps looping until it’s pressed Z‘; ' :SISIUY temp . ;oe)(;fi adjusfed s '
Ly s o

b
; Main body of program:

i; ‘Start:cbi  ADMUX, 0 ; selects ADCO input

i L
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sbi ADCSR,ADSC  ; starts conversion .nclude “C:\Program Files\AtmelNAVR Studio\Appnotes\2313def.inc”
sbic ADCSR,ADSC Jist

| rjmp Start+2
i in Desired, ADCH  ; reads in 8-bit ADC result : Declarations:
i com Desired ; takes 5 - answer
| . . .def temp =r16
‘ shi ADMUX,0 ; selects ADC1 ¥nput .def NoteL =r19
| sbi ADCSR,ADSC ; starts conversion on output def NoteH  =r23
! Wait: s?ic APFZSR, ADSC ; waits until conversion has finished .def Length =r20
I rjmp Wait .def address =r21
H
2 "~ in Actual, ADCH ; reads in ADC result of actual output
" cp Actual, Desired ; compares actual with desired ; Start of Prosram
! brlo TooLow ; too low? * e
cp Desired, Actual ; . Init . . ecuted
brlo TooHigh ; too high? . :{:t?p m ; glor(s” _mlf\,?gcu ¢
cbi DDRB,0 : just right, so makes PB0 an input reti ’ $002 '
rjmp Start : reads ADCO input again - ‘ roti : $003
. rimp ToggleOut : S004 - Compare A
; TooLow: . . = ) }
sbi  DDRA. 0 : t00 low so makes PBO an output M hameeNot o0h T Overfow
"’ sbi  PortB, 0 :  and sets it rjmp angeiote : B vertiow
rjmp Start : reads ADCO input again

TooHigh: A -org 0x13
sbi DDRB,0 : too high, so makes PB0 an output . R
cbi  PortB, 0 ; and clears it Lo?kUpTable: _
rimp Start ; reads ADCO0 input again -dw  0x0ECB 1300=C

.dw  0xODF7 1801 = C#
. .dw 0x0D2E ;$02=D

PROGRAM N - Melody Maker .dw  0x0C71 ;303 = D#

gl dbiek gk Rk ko Rk Rk Rk Rk Rk .dw 0x0BBE S04=E

; written by: John Morton * .dw 0x0B13 $05=F

; date:  22/3/02 * dw  0x0A76 1806 = F#

; version: 1.0 * dw  0x09E0 3$07=G
; file saved as: music.asm * : dw  0x0952 ;308 = G#
; for AVR: 2313 * .dw -0x08CC ;$09=A
; clock frequency: 4MHz * .dw  0x084D ;S0A = A#
$FFFHF R kR kR ek ek Rk ek .dw  0x07D6 ;$30B=B )
e

; Program Function: Plays a melody stored in the EEPROM ;

. ToggleOut: .
-device  at90s2313 in  temp, PortD ; toggles state of speaker output’
-nolist com temp ; to produce square wave
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out PortD, temp : dec temp 5 ,
reti rimp GetOctave : i
i
; GetLength: ; gets length
ChangeNote: out OCRIAH, NoteH ; stores final freq values in Output
dec Length ; waits sufficient length out OCRIAL,NoteL ; Compare registers ‘
breq PC+2 ; in temp, EEDR ; reads EEPROM again
reti ; andi temp, 0b11000000 ; gets bits 6 and 7
: swap temp ;
Rest: in temp, TIFR ; creates short pause between notes Isr temp ; uses these to get a Length=2,4,6 or 8
sbrs temp, 1 : i subi temp, -2 :
rjmp Rest ; mov Length, temp ;'stores in Length
Idi temp, 0b0000001G ; inc  address ; selects next EERPOM address (next note)
cut TIFR, temp ; reti
; Reset:
Read_EEPROM: cir  address : resets EEPROM address to 0
out EEARL, address ; reads next address : rimp Read_EEPROM ;
sbi EECR, 0 ; initiate read
; get note ; :
in ZL.EEDR : reads EEPROM Init: 1di  temp. 0b01000000 ; PBO-5: kevboard in
andi ZL,0b00001111 ; masks bits 4-7 out DDRB, temp : PB6: N/C, PB7: Record
Idi temp. 0b01111011 ; PDO: N/C, PD1: speaker
cpi ZL, 0x0C ; if 0x0C, loops back to first address out DDRD, temp ; PD2: play, PD3-6: keyboard out
breq Reset : :
brlo PC+2 ; if higher than 0C, makes 0B Idi  temp, 0b10000000 ; ne pull-ups on PortB
Idi ZL, 0x0B 3 out PortB, temp 3
ldi  temp, 0b00000100 ; pull-ups on play button
Isl ZL ; multiplies by 2 to get word address out  PortD, temp H
subi ZL,-0x26 ; adds 26 to point to table
Ipm ; reads look-up table ldi  temp, 0b00000101 ; TCO is CK/1024
mov NoteL, R0 ; stores result out TCCRO, temp ;
inc ZL : reads next entry of look-up table cir temp ; no PWM
lpm out TCCRI1A temp ;
mov  NoteH, RO ; stores result , ' ldi  temp. 0b00001001 ; TCT is CK, clear TC1
out TCCRI1B, temp ; after comparematch , ,
; get octave i :
in temp, EEDR ; reads EEPROM again ldi  temp, 0b01000010 ; enables TCO interrupt ', :
swap temp ; out TIMSK, temp ; enables TC1 CompaA;int. o
andi temp, 0b00000011 ; gets bits 4 and § : Idi  temp, 0b00000000 ; disables other interfupts -k
GetOctave: out GIMSK,temp  ; , | L
breq GetLength . uses bits 4,5 to select octave I f
Isl  NoteL ; divides by two to get next octave : ldi temp, RAMEND ; sets up stack pointers

. .rol  NoteH S it - - out SPL,temp
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cr ZH
clr  address
out EEARH, address

.
bl

s

rcall Read_EEPROM ; gets first note

b
; Main body of program:

Start:rjmp Start

PROGRAM O - Keyboard Converter

KA THKFI I A IR AT AT I X IR AT AT I I A I FF T T hdddx
b

: written by: John Morton *
; date:  25/2/02 *
; version: 1.0 *

; file saved as: Keyboard.asm
; for AVR: 2313
; clock frequency: 4MHz *

AHRKFH A KA F I AT I I I I IR AT I AT AT hh T dhddrrioxr
Y

; Program Function: Converts a computer kevboard into a musical one

.device at90s2313
.nolist

.include “C:\Program Files\Atmel\AVR Studio\Appnotes\2313def.inc”
Jist

é Declarations:
.def temp =r16

.def data =r17
.def Length =rl8

Y

; Start of Program

rjmp Init ; first line executed
reti 5 $001 - INTO
reti 5 $002
reti ; $003 »
reti 3 $004 - Compare A
_ reti . 35005
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reti

rjmp EndNote
reti

rjmp Change
reti

reti

reti

2
.org 13
:Note Lookup Table

; Seven-segment Lookup Table

.db
.db
.db
.db

.dw Ox1ES84

.dw OxFFFF, OxFFFF
.dw 0x1838

dw 0x19A9

dw  0x16DC

dw  0x145E

dw o 0x1225

.dw OxFFFF

~dw  0x102A

.dw 0x0F42

.dw 0x0D98

.dw OxFFFF, OxFFFF
dw  0x0E67

.dw 0x0CC8

.dw OxFFFF, 0xFFFF
.dw 0x1B30

dw  0x1594

dw 0x1120

.dw OxFFFF

.dw O0x1CCE

.dw OxFFFF

.dw  0x1339

.dw OxFFFF

.dw OxFFFF

.org 43

0b01110001

; $006 - TC1 Overflow

; $007 - TCO Overflow

; $008

; $009 - UART Received
; $00A

; $00B

; $00C

a’=C

b, ‘¢’ = nothing

.sd’
e

I
o m

[l

: #
o f
k]

I

=79, 72
non
>o0m

:‘i* = nothing
¢ji'=B
¢k*=Chi
#“I'=D hi

;'m’, ‘n’ = nothing
3*0>=C#hi
;p’=D# hi

;'q’, ‘r’ = nothing
3¢'=D

Ct=F#

u=A#

;*v’ = nothing
sw’=C#

;*x’ = nothing
v =G#

;‘z’ = nothing

: 26 = nothing

0b10000000, 0b10000000 ; dash

0b11110001
0b10111110

;d#

e

h’!ﬂ\u S




.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db

6b11100001

0b01110101

011100111

0b10000000

0b11110100

0b01110001

0b10110110
0b10000000, 010000000
0b01111001

0b10111110
0010000009, 010060000
0b10110110

0b11101001

0b11101111

0b10000000

0b01111001

0510000000

0b01111101
0b10000C00, 6b16600009

k]
EndNote:

clr temp
out TCCRIA, temp
reti

b

Change:

i
i

in 7L, UDR
subi ZL, 0x61
cpi  ZL,26
brloe PC+2

di  ZL,26

Is} ZL

subi ZL,-27

Ipm

out OCRI1AH, RO
dec ZL

Ipm

out OCRIAL,RO

subi ZL,-60
Ipm

;d
sF# e re——————
JA# §

; dash 3
;C#

; dash
;G#

; dash

=y

L

L Ya—

daa

-

Vi

o8
AR

3 ;;4.5.,1\‘&

; reads data

; subtracts 0x61

; if ZL is more than 25
;  makes ZL =26

.
’

: multiples ZL by 2

; adds 27, points to higher byte
; reads higher byte

; stores in OCR1AH

; points to lower byte

; reads lower byte

; stores in OCR1AL

; points to second lookup table
; reads table

out PortB, R0
mov temp, RO
andi temp, 0600001000
out  PortD, temp
Idi  temp, 0b01000000
out TCCRI1A, temp
clr  temp
out TCNTO
reti
Init: ser temp
out DDRB, temp
Idi  temp, Ob11111110
out DDRD, temp
cir  temp
out  PortB, temp
out  PortD, temp
Idi  temp, 0600000101
out TCCRJ, temp
ldi  temp, 00010006000
out TCCRIA, temp
Idi  temp, 0b00001001
out TCCRIB, temp
Idi  temp, 0b01000010
out TIMSK, temp
Idi  temp, 0b00000000
out GIMSK, temp
ldi  temp, RAMEND
out SPL, temp
ldi  temp, 15
out UBRR, temp
ldi  temp, 0b10010000
out UCR, temp
Idi  NoteH, Ox1E
ldi  NoteL, 0x84
out OCRIAH, Notelf

/

; displays result
; copies RO to temp
; masks all but bit 3

; copies to PortD to set # LED

; OC1 toggles with each Qutput

;  Compare interrupt
; resets TCNTO

?

.
k]

; 7 seg code
; PB6: N/C, PB7: Record
; PD0: RXD
;s PD1: TXD

; no pull-ups on PortB
; TCO is CK/1024
s no PWM

; TC1 is CK, clear TC1
s  after compare match

; enables TCO interrupt
; enables TC1 CompA int.
; disables other interrupts

’

; baud rate = 9600

b

; enables RX mode and RX interrupt

b4

splaysa C whe_n first turned on

s .

.
?
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LUz

out OCRIAL, NoteL o
sei ; enables interrupts
cr ZH ; makes sure higher byte of Z is 0

Main body of program:
start:

rjmp Start

ROGRAM P - Computer Controlled Robot

FAXIAXIAIIXI XA R I I AT e dd o hrrhrdrdhkxkrs

written by: John Morton *
date: 25/2/02 *
version: 1.0 *
file saved as: reaction.asm *
for AVR: 1200 *

*

clock frequency: 4MHz

HEX XK I AIIR T ARII IR T AR A I TR R o kT r kT ko hd

Program Function: Simple robot which sends and receives commands
from a computer

Jevice at90s2313
nolist

inciude “C:\Program Files\Atmel\AVR Studio\Appnotes\2313def.inc”
‘ist

Declarations:

ief temp =rlé

lef toggle =r17

i ief data =rl8
_ lef speedl0 =rl19
" lef speedl =r20
* lef Hundreds =r21
ief Tens =r22

lef Thousands =r23

lef Ones =r24

lef DisplayNumber =r25

; Start of Program

rjmp Init
reti

reti

reti

reti

reti

rjmp Display
rjmp Received
nop

reti

reti

b
.
b
.
b
3
.
k]
.
Py
.
k)
.
Y
.
k)
b

*

first line executed

001

002

003

004

005

006 - T/CO overflow

007 - UART RXx interrupt
008 - UART Empty interrupt
09 - UART Tx interrupt
0A

:ASCII to 7 Seg Lookup

.org
.db
.db
.db
.db
.db
.org
.db
.db
.cb
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.org
.db

.db
.db
.db
.db

16

0b00111111, 0b06000110 :
0b01011011, 0b01001111 :

0b01100110, 0b01101101
0b01111101, 0b00000111
0b01111111, 0b01101111
24

0b01000000, 0b01110111 ;

0b01111100, 0b00111001
0b01011110, 0b01111001
0b01116001, 0b00111101
0b01110110, 0b00000110
0b00011110, 0b01000000
0b00111000, 0b01000000
0b00110111, 0b00111111
0b01110011, 0b01000000
0b01010000, 0b01101101
0b01111000, 0b00111110
0b01000000, 0b01000000
0b01000000, 0b01101110
0b01011011

40

0b01000000, 0b01110111
0b01111100, 0b01011000
0b01011110, 0b01111001
0b01110001, 0b01101111
0b01110100, 0000000100

e

we p
o0 N j& jd [
n

Zrsomme g

o L)

e Wwe we we e

o se we s

I

b
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b
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.db  0b00011110, 0b01000000 ; J, -
.db  0b00000110, 0b01000000 ;1,-
.db  0b01010106, 0601011100 ;n,o0
.db  0b01110011, 0b01000000 ; P, -
.db  0b01010000, 001101101 ;r, S
.db  0b01111000, 0b00011100 ;t, u
.db  0b01000000, 0601000000 ; -, -
.db  0b01006000, 001101110 ;- ¥
.db  0b01011011 VL

Bl

: Command received
Received:
in Data, UDR
cpi  Data, 0x5SD
brne PC+2
rjmp EndMessage

brtc PC+2
rimp Message

cpi  Data, 0x67
breq GoStop

cpi  Data, 0x74
breq Turning

cpi  Data, 0x73
brpe PC+2
rjmp ChangeSpeed

cpi  Data, 0x2B
brne PC+2
rimp SpeedUp

cpi  Data, 0x2D
brne PC+2
rjmp SlowDown

- cpi Data, 0x5B
brne PC+2
set

reti

; stores received data

; compares data with ‘|"

; skips next instruction if not
; clears T bit

; tests T bit (indicates message)

; compares data with ‘g’

b

; compares data with ‘t’

; compares data with ‘s’

b

3

; compares data with ‘+°
3

; compares data with ‘-’
s

; compares data with ‘[’
5

; sets T bit

; returns

I
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GoStop:
in temp, TCCR1A
sbre temp, 0
rimp Stop
sbr temp, 1
out TCCRIA, temp
cbi UCR, RXEN
sbi UCR,TXEN
ldi  temp, 0x47
rcall Send
Idi  temp. 0x4F
rcall Send
ldi  temp, 0x21
rcall Send

rimp EndMessage

Stop: cbr temp. ]
out TCCRI1A, temp
cbi UCR.RXEN
sbi UCR.TXEN
ldi  temp. 0x53
rcall Send
ldi  temp, 0x54
rcall Send
Idi  temp, 0x4F
rcall Send
Idi  temp, 0x50
rcall Send
Idi  temp, 0x21
rcall Send
rjmp EndMessage

Turning:

in  temp, PortB
eor temp, toggle
out PortB, temp
c¢bi UCR, RXEN
sbi UCR,TXEN
Idi  temp, 0x54
rcall. Send
Idi temp, 0x75
rcall Send
ldi  temp, 0x72
rcall Send .

LT

; reads in current PWM state

3

M
; starts PWM

9
; disables receiver

: enables transmitter
; “G”
: “0”
; A1 k2]

b

; stops PWM

;

; disables receiver

: enables transmitter
: »S!‘

:’ LLT§9

.
. ”
: “0

.

]

: wp»

.
E
. Gy

; toggles state of left motor

.
?

; disables receiver

; enables transmitter
. “T” N
9 ;

o




e
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Idi  temp, Ox6E ;“n”
rcall Send ;
Idi  temp, 0x69 ; “i”
rcall Send ;
idi temp, 0x6E ; “n”
rcall Send
ldi  temp, 0x67 ; “g”
rcall Send
rimp EndMessage
ChangeSpeed:
sbis USR, RXC ; waits for next byte
rjmp ChangeSpeed H
in speed10, UDR ; reads tens digit
mov data, speed1(
clr  temp
subi data, 0x30 ; zeros to 0
Times10: ’
breq CS2 :
subi temp, -10 :
dec  data ;
rimp Times10 :
CS2: sbis USR,RXC :
rjmp CS2 :
in speedl, UDR ; reads ones digit
mov  data, speedl
subi data, 0x30 :
add temp, data ; adds to tens digit
mov data, temp - ; multiplies temp by 3
add temp, temp :
add temp, data H
brce PC+2 5
Idi  temp, OxFF : caps at FF if too high
out OCRIAL, temp ; outputs result
cbi UCR, RXEN ; disables receiver
sbi . UCR, TXEN ; enables- transmitter
Idi  temp, 0x53 3 “S”
rcall Send H
Idi  temp, 0x70 s “p”

Program P: Sample programs

Idi  temp, 0x65
rcall Send
ldi  temp, 0x65
rcall Send
ldi  temp, 0x64
rcall Send
1di temp, 0x20
rcall Send
Idi temp, 0x73
rcall Send
ldi  temp. 0x65
rcall Send
Idi  temp, 0x74
rcall Send
Idi  temp, 0x20
rcall Send
ldi  temp.(x74
rcall Send
Idi  temp. Ox6F

rcall Send

idi  temp. 0x20
rcall Send

mov temp. speed10
rcall Send

mov temp, speedl
rcall Send

rimp EndMessage

SpeedUp

zin temp, OCRIAL
ldi  data, 10
add temp, data
brecc PC+2

ldi  temp. OxFF
out OCRIAL, temp
cbi  UCR, RXEN
sbi UCR,TXEN
ldi  temp, 0x53
rcall Send

Idi  temp, 0x70
rcall Send

ldi  temp, 0x65
rcall Send

I1di temn. 0x65

: first digit
; second digit

bl

; reads in current value

; adds 10

; overflowed?
; if so, makes it FF

; puts it back

; disables receiver

; enables transmitter
; “S”

b
23

I
P

7
4

[Tye
e

o0 we we e

“g» - - -
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|

: rcall Send ; rcall Send H
ldi  temp, 0x64 : “d” ldi  temp, 0x77 3 “w”
rcall Send H rcall Send 5
Idi temp, 0x69 H ¢ Idi temp, 0x6E s “n”
rcall Send H rcall Send H . |
ldi  temp, 0x6E :“n” rjimp EndMessage I
rcall Send ; 5
Idi  temp, 0x67 ;¢g” Message: _
rcall Send ; in ZL,UDR ; reads in data
Idi  temp, 0x20 M . cbi  UCR, RXEN ; disables receiver
rcall Send . : sbi UCR,TXEN ; enables transmitter
ldi  temp, 0x55 el Ui mov temp, ZL ; copies back to PC
rcall Send : rcall Send ;
Idi  temp, 0x70 L 4p” cbi  UCR, TXEN ; disables receiver
rcall Send : sbi UCR, RXEN ; enables transmitter
rjmp EndMessage subi ZL, 0x10 ; subtracts 16

Ipm
SlowDown: : mov Thousands, Hundreds ;
in temp, OCRIAL : reads in current value mov  Hundreds, Tens 5
subi temp, 10 : subtracts 10 mov  Tens, Ones ; .
brce PC+2 ; underflowed? : mov  Ones, R0 :
clr  temp . if so, resets to 0 reti
out OCRIAL,temp ; putsitback
cbi  UCR, RXEN ; disables receiver EndMessage:
sbi UCR,TXEN ; enables transmitter . clt ; clears T bit
ldi  temp, 0x53 3 “8” cbi UCR, RXEN ; disables receiver
rcall Send ; sbi UCR, TXEN ; enables transmitter
ldi  temp, 0x6C il i ldi  temp, 0x0A ; new line
rcall Send ; rcall Send ;
ldi  temp, 0x6F ; “0” Idi  temp, 0x0D ; carriage return
rcall Send : rcall Send 3 :
ldi  temp, 0x77 3w cbi UCR,TXEN ; disables receiver
rcall Send H sbi UCR, RXEN ; enables transmitter
Idi temp, 0x69 i i reti :
rcajl Send ; ‘
Idi =~ temp, 0x6E ; “n” ; '
rcall Send 3 Send:out  UDR, temp H
idi temp, 0x67 ; “g” sbis USR, TXC H
rcall Send ; rjmp Send+1 ; ";
ldi  temp, 0x20 i sbi  USR, TXC . ; o
rcall Send ; ret : _ !
ldi  temp, 0x44 3 “D” |
rcall Send 5
ldi temp, 0x6F ; “o” i
: o 3 «
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; Display Subroutine

Display:
inc  DisplayNumber
cpi  DisplayNumberd4
brne PC+2
cir  DisplayNumber

ldi ZL,21
add ZL, DisplayNumber
1d temp, Z

out  PortB, temp

in temp, PortD

Ist temp

sbre temp, 7

ldi  temp, 0b00001000
out PortD, temp

reti

b
.
b
b
.
*

; zeros ZL to R21

; outputs temp to Port B

s
; gone too far?

Init: }di  temp, 0b11111111
out DDRB, temp
Idi  temp,0b11111110
out DDRD, temp

idi  temp, 0b00000000
out PortB, temp
Idi  temp, 0b00000100
out  PortD, temp

ldi  temp, 0b00000011
out TCCRO, temp

ldi  temp, 0b10000000
out TCCRIA, temp
ldi  temp, 0b00000001
out TCCRI1B, temp
Idi  temp, 0b00000010
out TIMSK, temp

Idi  temp, 0b10010000

; PB0-7: outputs

; PDO0: input, PD1-6: outputs

*

"5 all displays off

b
; selects first display

b4

; T/CO counts at CK/64

3

; 8-bit PWM mode on

; clears when upcounting

; T/C1 counts at CK

; enables T/CO overflow

9

. 3 turns RXC and TXC interrupts
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out UCR, temp
Idi  temp, 15
out UBRR, temp

ldi  temp, RAMEND
out  SPL, temp

Idi toggle, 0b10000000
clr  DisplayNumber
clr  Thousands

clr  Hundreds

clr Tens
clr  Ones
clr ZH
sei

clt

o

; Main body of program:

Start:rjmp Start

; enables RX

*

.
3

5 sets up stack pointer

e we we we

s

: clears T bit
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Answers to exercises

Answers to Chapter 1

Answer 1.1: (a)

Largest power of two less than 199 = 128 =27 Bit 7 =1
This leaves 199 — 128 = 71. 64 is less than 71 so bit 6 =1

This leaves 71 — 64 = 7.

This leaves 7 -4 =
This leaves 3 — 2 =

—_— D

32 1s greater than 7 so bit 5=10
16 is greater than 7 so bit4 =0
8 is greater than 7so bit 3 =10
4islessthan 7sobit2=1

2 isless than 3 sobit 1 =1

1 equals 1 sobit0 =1

The resulting binary number is: 11000111

OR...

(b)

Divide 199 by two.
Divide 99 by two.
Divide 49 by two.
Divide 24 by two.
Divide 12 by two.
Divide 6 by two.
Divide 3 by two.
Divide 1 by two.

Leaves 99, remainder 1
Leaves 49, remainder 1
Leaves 24, remainder 1
Leaves 12, remainder 0
Leaves 6, remainder 0
Leaves 3. remainder 0

- Leaves 1, remainder 1

Leaves 0, remainder 1

S0 11000111 is the binary equivalent.

Answer 1.2: (a)

Largest power of two less than 170 = 128 =27, Bit 7= 1
This leaves 170 — 128 = 42. 64 is greater than 42 so bit 6 = 0

This leaves 42 — 32 = i0.

This leaves 10 — 8 = 2.

321slessthan42 sobit 5=1

16 1s greater than 10 sobit4 =0 -

8islessthan 10sobit3 =1
4 is greater than 2 so bit2=0
2equals2sobitl=1

" Nothing left, so bit 0 = 0

The resulting binary number is: 10101010
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Answer 1.3:
Answer 1.4:
Answer 1.3

Answer 1.6:

Answer 1.7:

Answer 1.8:

Answer 1.9:

OR...

()

Divide 170 by two.
Divide 85 by two.
Divide 42 by two.
Divide 21 by two.
Divide 10 by two.
Divide 5 by two.
Divide 2 by two.
Divide 1 by two.

Leaves 85, remainder 0
Leaves 42, remainder 1
Leaves 21, remainder 0
Leaves 10, remainder 1
Leaves 3, remainder 0
Leaves 2, remainder 1
Leaves 1, remainder 0
Leaves 0, remainder 1

S0 10101010 is the binary equivalent.

There are twelve 16s in 199. leaving 199 - 192 =17.
Sobit 1 =12 =C, and bit 0 = 7. The number is therefore: C7.

There are ten 16s in 170. leaving 170 - 160 = 10. Sobit 1 = A,
and bit 0 = 10 = A. The number is therefore : AA.

1110=14=E. 0111 =7.
The number is therefore E7.

01011010 =90
+ 00001111 =15
01101001 =105

40 =00101000

50=100110010

-40=11010111+1= 11011000

1111

11011000 =-40
+ 00110010 =50
00001010 =10

8 KB of program memory
512 bytes of EEPROM

512 bytes of SRAM

7
o

1. 15 push buttons require five + three = eight pins (five input,

three output)

2. Four seven segment displays require four + seven = eleven

outputs .-l iins
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Creating a total of nineteen I/O pins, hence the smallest AVR in
Appendix A 1s the 4433.

Answer 1.10:

‘ Set-up

Pressure sensor
triggered?

| YES

Reset timer

i
s

NO |

10 seconds
passed?

Button Bor C
pressed?

Button A
pressed?

YES

10 seconds
passed?

Button Aor C
pressed?

Button B
pressed?

Button Aor B YES

pressed?

10 seconds
passed?

Button C
pressed?

<
m
[0)]
Y

Sound 4
ALARM! -

i Answer 1.11: ‘
0b00000001 001 0x01
l 0000000010 002 0x02

" 0b00000100 - 004 0x04 -
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0b00001000 008
0b00010000 016
0b00100000 032
0b01000000 064
0b10000000 - 128
0b00000001 001
Answer 1.12:
In no particular order:
0b00000011 003
0b00000101 005
0b00000110 006
0b00000111 007
Answer 1.13:
Idi temp, 0b11111110
out DDRB, temp
Idi temp, 0b000111
out DDRD, temp
Idi temp, 0b00000001
out PortB, temp
cir temp
out PortD, temp

Answers to Chapter 2

Answer 2.1:
¢bi  PortB,0
rjmp  Start

Answer 2.2:

LEDoff:
sbi PortB, 0
rjmp  Start

Answer 2.3:
0b11111100
0b01100000
0b11011010
0b11110010
0b01100110
0b10110110
0b10111110

: 0b111000(‘)‘0;

I A il el

0x08
0x10
0x20
0x40
0x80
0x01 and so on...

0x03
0x03
0x06
0x07

; PB0:input, PB1-3: output

: and PB4-7: N/C

; PD0-2: outputs, PD3-5: input
; and PD6.,7: N/C

: PBO: pull-up, PB1-3: low

: PD0-2: low, no pull-ups

e

; turns on LED
; loops back to beginning

; turns off LED
; loops back to beginning

or . 0b00001100

X
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mEaR TR0

{nswer 2.4:
cir
clr
ClearLoop: st
inc
cpi
brne

Answer 2.5:

start: shic
rjmp
inc

; inswer 2.6: cpi
’ brne
| ‘ clr

# inswer 2.7: 1di

i add
ld
out

‘ rjmp

inswer 2.8:
ReleaseWait: sbis
. rjmp
rjmp

inswer 2.10:
JpTest: sbic
rjmp
dec
wr-7 . brne

0b11111110
0b11110110
0b11101110
0b00111110
000011010
0b01111010
0b10011110
0b10001110

ZL

ZH

ZL,Z

ZL

7L, 16
ClearLoop

PinD, 0
Start
Counter

Counter, 10
PC+2
Counter

ZL,20

ZL, Counter
temp, Z
PortB, temp
Start

PinD, 0
ReleaseWait
Start

PinD, 1

Timer

Speed

ReleaseUp -

or 0b11100110

; clears ZL

; clears ZH

; writes ZL to Rx

; moves on to next address
; gone too far?

; no, so loops back

; button pressed?
; no, so keeps looping
; ves, so adds 1 to Counter

; is Counter = 10?
; no, so skips
; ves, so resets Counter

; zeros ZL to R20

; adds Counter to ZL

; reads Rx into temp

; outputs temp to Port B
; loops back to Start

; button released?
; no, so keeps looping
; ves, S0 loops back to start

nswer 2.9:  Rising edge, external count. So the number is: 0b00000111.

; checks speed-up button

; not pressed, jumps

; speeds up time

; jumps to ReleaseUp if not 0
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inc
ReleaseUp: sbis
rjmp

Answer 2.11: mev

Speed ; adds one to Speed
PinD, 1 ; waits for button to be released
ReleaseUp 5 :

Counter, Speed ; copies Speed into Counter

Answer 2.12: Moves 03C into PC.

Answer 2.13: 400 000 clock cycles. Divide by 5 = 80 000 = 0x13880
Split up over three registers, so their initial values will be:
0x80, 0x38, and 0x01.

Answer 2.14:
Debounce: Idi
Idi
- 1di

Loop: subi
sbci
sbei
bree
ret

Answer 2.15:
Start: ldi
out

Answer 2.16: sbic
rjmp

Answer 2.17: sbi

Answer 2.18:

Loop: rcall
brts

Answer 2.19: sbi
cbi

Answer 2.20: 1di
- out

Answer 2.21: Mdi
EightSeconds:
. rcall

Delayl, 0x80 ; sets up counting registers
Delay2, 0x38 ;
Delay3, 0x01 :

Delayl1, 1 ; inserts delay -
Delay2, 0 :
Delay3, 0 3
Loop ;

; returns from subroutine

temp, 0b00010001 ; motorists: green
PortB, temp ; pedestrians: temp

PinD, 0 ; tests button

Start ; not pressed

PortB, 5 ; turns on WAIT light

Timer ; Keeps timing

Loop ; stays in loop until T is clear
PortB, 1 ; motor amber on

PortB, 0 ; motor green off

temp, 0b00001100; moto:rfsts: red
PortB, temp ; pedestrians: green
temp, 16 ; 8 seconds delay

- HaltSecgnd_@f; . ‘;‘
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dec temp ; cpse temp, Mark240  ; compares temp with Mark240
brne EightSeconds ; ret ; if not equal returns
- subi Mark240, -240 ; adds 240 to Mark240
Answer 2.22: 1di temp, 0b00001010 ; motorists: amber dec Count250 ; subtracts one from Count250
out PortB, temp ; pedestrians: green breq PC+2 ; if zero, skips next line
ret ; if not zero returns
Answer 2.23: 0610110011 — 0b01001100
Idi Count250, 250 ; resets Count250
Answer 2.24: 1di tog, 0b00001010  ; sets up tog register clt ; clears T bit
| in temp, PinB ; reads in state of lights ret :
!' eor temp, tog ; toggles
‘ out PortB. temp ; outputs Answer 2.30:
. 4nswer 2.25: 1di tog, 0b00001010  ; sets up tog register
, idi Counter, 8 ; sets up Counter register
i FlashLoop: reall HalfSecond ; waits % a second [ Set-up }
i' in temp. PinB ; reads in state of lights
! eor temp, tog ; toggles
i out PortB. temp ; outputs <«
| dec Counter : does this 8 times

Work out what type of

n FlashLoo
brne lashloop gate to simulate

Inswer 2.26: set ; sets T bit

rjmp Start ; loops back to Start ]
4nswer 2.27: 1 228 800 clock cycles. Divide by 5 = 245 760 = 0x3C000 Read inputs and produce
Split up over three registers, so their initial values will be: corresponding output
0x00, 0xCO0, and 0x03.
HalfSecond: clr Delay1 ; sets up counting registers
1di Delay2. 0xC0 :
Idi Delay3, 0x03 3
JalfLoop:  subi Delayl, 1 ; inserts delay Answer 2.31: Isr
sbci Delay2, 0 :
sbei Delay3, 0 H Answer 2.32:
bree RalfLoop ; : Start: in ZL, PinB ; reads in PinB
ret ; andi  ZL, 0b001110 ; masKs 0,4 and 5
Isr ZL ; rotates
inswer 2.28: , o
Timer: brts  PC+2 ; test T bit, skip if set Answer 2.33: subi  ZL,-2 ; adds 2 to ZL
ret ; returns if T is clear ; reads lookup table into RO

| Answer 2.29: in temp, TCNT0  _; reads Timer 0 into temp I‘ )
: : 3 B
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inswer 2.34:

{nswer 2.35:
dw
dw
dw

inswer 2.36:

fnswer 2.37:

NAND 1110 -> 00110010

NOR 1000 -> 00100060

ENOR 1001 -> 00100001

EOR 0110 -> 00010010

NOT 1100 -> 00116000

Buffer 0011 -> 00000011
0b0011001000100000 ; NAND and NOR
0b0010000100010010 ; ENOR and EOR
0b0011000000000011 ; NOT and buffer
mov temp, RO ; copies RO to temp
ori temp, 0b11110 ; forces bits 1-4 high
out PortB, temp ; outputs result

rjmp

Start

; loops back to Start

64 ms = 256 000 cycles
Divide by § = 32 000 decrements = 0x7D00

Delay1 initialized to 0x00 and Delay?2 initialized to 0x7D

tnswer 2.368:

YoneHi:

nswer 2.39:

‘nswer 2.40:

divide64:.

nswer 2.41

-in lowerbyte, TCNTO ; immediately stores TCNT0
cp lowerbyte, temp  ; compares with previous value
brsh Divide64 ; jumps to Divide64 if OK
inc upperbyte ; increments higher byte
cpi upperbyte, 0xFA  ; has it gone too far?
breq TooHigh ; skips to TooHigh if so
Isr upperbyte ; rotates right, bit 7= 0
ror lowerbyte ; rotates right, bit 7 = carry

; flag

Idi temp, 6 ; sets up temp with 6

Isr upperbyte ; divides two-byte word by 2

ror lowerbyte 5

dec temp ; does this 6 times

brne  Divide64+1 ; keeps looping until finished
> epl upperbyte,0 ; higher byte 0?

brne - PC+3 ; skips next 2 instructions

Answers to exercises
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Answer 2.42:

HalfSecond:

Answer 2.43:

TooHigh:

Answer 2.44:
Display:

Answer 2.45:

Answer 2.46:

cpi
breq

lowerbyte, (
LowSpeed

; lower byte 0?
; jumps to if freq < 1kHz

2 000 000 clock cycles to wéste.
14 cycles in loop => 142 857 = 0x022E09
Therefore set up registers with 0x09, 0x2E, and 0x02.

Idi~
Idi
Idi

rcall
subi
sbci
sbci
bree
rjmp

Idi
1di
1di
rjmp

dec
breq
ret
wdr
Idi

inc
cpi
brne
clr

Idi
add
id
clr
add
Id
sbic
ori

. out

S ETR

Delay1, 0x09 ; sets ups delay registers
Delay2, 0x2E H

Delay3, 0x02 H

Display ; calls display for half a second
Delayl, 1 5

Delay2, 0 ;

Delay3, 0 :

HalfSecond ;

Start ; loops back to Start

Hundreds, 11
Tens. 10
Ones, 1

; code for a -
; code fora H
; code foral

- PortB, temp

HalfSecond-3 ; displays for half a second

; changes display every 50 visits
; skips if 50 time

; returns

; pats the dog

DisplayCounter, 50 ; resets DisplavCounter

DisplayCounter
PC+2

DisplayNumber  ; increments DisplayNumber
DisplayNumber,3 ; has it reached 3?

PC+2 ; no, so skips
DisplayNumber ; ves, so clears
ZL,26 ; initializes ZL to R26

ZL, DisplayNumber; points to right digit-
temp, Z : loads value into temp
ZL ; zeros' ZL to R0

ZL, temp - 3 adds temp to ZL
temp, Z ; reads Rx into temp
PortB, 7 ; tests kHz LED

temp, 0b10000000 ; if it’s on, keeps it on
.5 outputs temp to Port B

|

'
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Inswer 2.47:

inswer 2.48:
LowSpeed:

{nswer 2.49:

tnswer 2.50:

LowLoop:

Answer 2.51:

inswer 2.52:
Jivide:

in
Isl
sbre
idi
out
ret

Idi
out
cir
clr
cbi

Idi
clr
out

in

in
eor
sbre

rjmp
rcall

mov

cp
brsh

inc
brne
inc
cpi
breq
rjmp

sub
sbc
she

. bres

temp, PinD
temp
temp, 3

temp, 0b00000001

PortD, temp

temp, 0b00000001

TCCROY, teinp
Delay2

Delay3

PortB, 7

Counter, 2
Delayl
TCNTO0, Delavl

; reads in PinD

; rotates left

; tests bit 3 of result

; resets if gone too far.

; outputs result to Port D

; returns from the subroutine

; sets TCNTO to count at CK
s
: resets delay registers

;, clears PB7 to turn on Hz LED

; sets up Counter to 2
; resets Delayl and TCNT0

b
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Answer 2.53:

inc
brne
inc
rjmp

DoneDividing:

Answer 2.54:
TooSlow:

recall
rjmp

clr
out
sleep

lowerbyte
Divide
upperbyte
Divide

DigitConvert
LowSpeed

temp
PortD, temp

Answers to Chapter 4

; if not set, adds 1 to answer

; overflow? .
; yes, so increments higher byte
; keeps looping

: converts answer into digits
; loops back to beginning

; turns off Displays
; goes to sleep

: first line executed
: handles external interrupt
; handles TCNTO interrupt

; sets bit 6 — enables External
;  INTO interrupt

; selects low level interrupt

; enables TCNTO0 interrupt

; keeps display going
; waits for Ready button
; keeps looping until pressed

multiplies by 5 and...

7
)

...adds 1

; divides by 2

Answer 4.1: rjmp  Init
store, PinD ; stores initial value rjimp  Extint
store2, PinD ; reads in current value rjmp  Overflowlnt
store2, store ; compares initial and current
store2, 4 ; skips if PD4 unchanged Answer 4.2: Idi temp, 0b01000000
Change ; jumps if PD4 changes out GIMSK, temp
clr temp
Display ; keeps displays going out MCUCR, temp ;
ldi temp, 0b00000010
temp2, Delayl ; stores old value out TIMSK, temp ;
Delayl, TCNTO ; reads in new value
Delayl, temp2 ; compares old and new Answer 4.3:
LowLoop ; loops back of new > old Start: rcall Display
, sbic PinD. 1
Delay2 ; increment higher byte rjmp  Start
LowLoop ; test if zero, loops if isn’t :
Delayv3 ; increments highest byte Answer 4.4:  mov temp, Random 3
Delay3, 0x3E ; too slow? add Random, temp ;
TooSlow 3 ves add Random; temp 3
LowLoop ; no, so loops back add Random, temp ;
add Random, temp ;
inc Random’ ;
temp, Delayl ; subtracts result from 400 000
temp2, Delay2- ; Answer 4.5:  mov CountX, Random ;
temp3, Delay3 H , Isr CountX
DoneDividing ~ ; if Carry set, finished dividing subi  CountX,-60

s and adds 60
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Answei 4.6:

Loopy:

ExtInt:

Cheat:

Dividel2:

; _Start:

oot

Answer 4.7:

Answer 4.8

Answer 4.9:

cir
out
idi
out
di
out

sei
brid
rjmp

sbis
rjmp
cir
out
in

in
sbrc
inc
subi
sbci
Idi
out

Idi
Idi
Idi
ret

Answer 4.10: clr

clr
subi
sbci
bres
inc
brne
inc
rjmp

Answer 4.11:

idi
out

TimeH ; reset timing register
BortB, TimeH ; turns off display

temp, 0b0100000 ; resets INTO interrupt flag
GIFR ;

temp, 0b00000010 ; resets TCO OVF interrupt flag
TIFR ;

; enables interrupts

Start ; skips-out when interrupts
Loopy disabled

PinD, 0 ; tests LED

Cheat ;

temp ; stops TCNTO

TCCRO, temp ;

TimeL, TCNTO0 ; reads in TCNTO value
temp, TIFR ; test for TCNTO overflow
temp, 1 :

TimeH :

TimeL, 0xA2 ; subtracts back 0xA2 from
TimeH, 0 . total reaction time

temp, 0b00000101 ; restarts TCNTO0 at CK/1024
TCCRO, temp ;

Hundreds, 10 5 b

Tens, 11 A

Ones, 12 ;d

TimeL ; resets result registers

TimeH ;

temp, 12 ; subtracts 12 from total
tempH, 0 5

DoneDividing ; skips out when there’s a carry
TimeL ; increment lower byte
Dividel2 ; lower byte = 0?

TimeH ; ves, so.increment higher byte
Dividel2 ; loop back '
temp, 0b00001000 ; puts initial value in Port D
PortD, temp H P

Answers to exercises

231

Answer 4.12:

Answer 4.]3:

Answer 4.14:

Answer 4.]15:
Start:

Answer 4.16:

Wait:

Answer 4.]17:

sbis
cbi
sbi’

sbis
cbi
shi

shis
cbi
sbi

sbis
cbi

in
swap
out
rjmp

ACSR, 5
PortD, 3
PortD, 2

ACSR, 5
PortD, 2

_ PortD, 1

ACSR, 5
PortD, 1
PortD, 0

ACSR, 5
PortD, 0

temp, PortD
temp
PortB, temp
Start

0b11100011 — ADCSR
0b00000000 — ADMUX

cbi
sbi
sbhic
rjmp

in
com

sbi
sbi
sbic
rjmp

in
cp
brlo
cp
brlo
‘cbi

rimp

ADMUX, 0
ADCSR,ADSC
ADCSR,ADSC
Start+2

Desired, ADCH
Desired

ADMUX, 0
ADCSR.ADSC
ADCSR,ADSC
Wait

Actual, ADCH
Actual, Desired
TooLow
Desired, Actual
TooHigh
DDRB,; 0
. . Start

; checks AC resu'lt
; clears bit 3 if it is low
; sets bit 2 in either case

; checks AC result
; clears bit 2 if it is low
; sets bit 1 in either case

; checks AC result
; clears bit 1 if it is low
; sets bit 0 in either case

; checks AC result
; clears bit 0 if it is low

; reads in final answer
; swap bits 0-3 for 4-7
: outputs result

)

; selects ADCO input

; Starts conversion

; has conversion finished?
; no, so keeps waiting

; reads in 8-bits of answers
3 5 - answer

; selects ADC1 input

; starts conversion on ADC1
; has conversion finished?

; 1o, s0 Keeps waiting

; reads in V of actual output

: compares actual with desired

; too low?
5

; too high?

5 actual = desired so makes PB0

o oam tmmnt and lIanane fn Céosed




232 Answers to exercises

Answer 4.18:

TooHigh: shi DDRB, 0
sbi PortB, 0
rjmp  Start

TooLow: sbi DDRB, 0
cbi PortB, 0
rjmp  Start

Answer 4.19: cir Address
\di Data, 0x30

ASCIILoop: out

; makes PB0 and output
; makes PB0 5V
: loops back to Start

; makes PBO0 an output
; makes PB0 0V
; loops back to Start

; first address is 0x00
s ASCII for “0” is 0x30

EEAR, Address :

out EEDR, Data . H
sbi EECR, 1 ; initiates write

EEWait: sbic EECR, 1 ; waits for write to finish
rjimp  EEWait : loops until EECR, 1 is cleared
inc Address ; selects next address
inc Data ; selects next ASCII code
cpi Data, 0x3A ; finished doing numbers?
brne PC+2 ; skips if not finished
di Data, 0x41 : ASCII for “A” is 0x41
epi Data, 0x47 ; finished completely?
brne ASCIILoop ; ves, finished

Answer 4.20:

0b01000000 — TIMSK

0b00001101 — TCCRI1B

; T/C1 prescaled at CK/1024
; reset T/C1 on compare match
; enables output compare int.

0x0F — OCR1AH ;4MHz/ 1024 = 3906Hz
0x42 — OCRIAL ;3906 = 0xF42
Answer 4.21:
ToggleOut: in temp, PortB ; reads in Port B
com temp ; inverts bits
out PortB, temp ; outputs to Port B
- reti ; returns
Answer 4.22:
ChangeNote: dec Length H
breq PC+2 ; skips on when enough time
reti ; has passed
in temp, TIFR ; waits until T/C0 overflow
e somn 1 - interrunt flac

Answers to exercises

Answer 4.23:

rjmp
ldi
out

Read_EEPROM:

Answer 4.24:

Answer 4.25:

GetQctave:

Answer 4.26:
GetLength:

out
sbi

in
andi
cpi
breq
brlo
1di

Isl-
subi
Ipm
mov
inc
Ipm
mov

in
swap
andi
breq
Isr
ror
dec
rjmp

out
out
in
andi
swap
Isr

- subi

mov
reti

Rest ;
temp, 0b00000010 ; resets interrupt flag
TIFR, temp ; ‘

EEARL, address ; select address

EECR, 0 ; initiate read

ZL,EEDR ; reads EEPROM

ZL,0b00001111  ; masks higher nibble

ZL, 0x0C ; compares with 0xC

Reset ; repeats melody if equal

PC+2 s is ZL < 0xC

ZL, 0x00 ; if it is selects a *C’ (0x0)

ZL : multiplies ZL by two

ZL.-0x26 : adds 26 to point to table
: reads table

NoteL. R0 ; stores lower byte

ZL : : moves to next address
: reads table

NoteH, R0 ; stores higher byte

temp, EEDR ; reads in the byte

temp ;5 swaps nibbles

temp, 0b00000011 ; selects correct bits
GetLength ; skips if 0

NoteH ; rotates higher byte
NoteL ; rotates lower byte with carry
temp ; repeats for each octave
GetOctave ;

OCRI1AH, NoteH ; stores note values in
OCRI1AL, NoteL.  ; output compare registers
temp, EEDR ; reads in EEPROM again

temp, 0b11000000 ; masks bits

temp ; swaps nibbles
temp ; rotates once

temp, -2 ; adds two
Length, temp ; moves into Length

o _ ;.returns
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Answers to Chapter 5 Answer 5.6:
.MAacro skeq ; calls this macro skeq
Answer 5.1: 1di Counter, 8 ; sets up counter with 8 breq PC+2 ; :
clr parityreg ; resets register .endmacro
Parity: Isr temp ; rotates temp to the right -
brcc PC+2 ; Answer 5.7:
inc parityreg : .macro HiWait ; calls this macro HiWait
dec Counter, 8 ; does this 8 times sbis @0, @1 ; tests input
brne  Parity H rjmp PC-1 ' ; keeps iooping until input is set
.endmacro
Bit 0 of parityreg is now a parity bit for temp.
Answer 5.8:
Answer 5.2: Display: inc DisplayNumber ; selects next display
Change: in ZL,UDR ; reads data cpi DisplayNumber,4  ; gone too far?
subi ZL, 0x61 ; subtracts 0x61 brne PC+2 ;
cpi ZL, 26 ; if ZL is more than 25 clr DisplayNumber ; ves, so resets to first
brlo PC+2 ;  makes ZL =26 _ )
1di ZL. 26 . Idi ZL,21 . zeros ZL to R21
add ZL. DisplayNumber : adds display number
Isi ZL : multiples ZL by 2 Id temp, Z : reads value
subi ZL,-27 : adds 27, points to higher byte out PortB, temp : outputs temp to Port B
lpm ; reads higher byte
: out OCRI1AH, RO ; stores in OCR1AH in temp, PortD : reads in current value
| dec ZL ] ; points to lower byte Isl temp . ; moves to next display
ipm : reads lower byte sbrc  temp, 7 ; gone too far? .
out OCR1AL, RO ; stores in OCR1AL Idi temp, 0b00001000 ; resets to first display
out PortD, temp ; outputs result )
Answer 5.3:  subi ZL, -60 ; points to second lookup table reti ; returns enabling interrupts
Ipm ’ ; reads table
out PortB, R0 ; displays result
mov temp. R0 ; copies RO to temp
andi  temp, 0b00001000 ; masks all but bit 3
out PortD, temp ; copies to PortD to set # LED
| Answer 5.4: 1di temp, 0b01000000 ; OC1 toggles with each Output
; out TCCRI1A,temp ; Compare interrupt
clr temp ; resets TCNTO
out TCNTO ; ,
reti
Answer 5.5:
EndNote: cir temp ' ; disconnects OC1 pin from
out ~ TCCRI1A,temp OC interrupt
reti s s o o
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.asm, 24

.cseg, 117

.db, 71, 117
.def, 20
.device, 18, 20
.dw, 70, 71, 124
.endmacro, 144
.equ, 20

.eseg, 117
.exit, 23
.include. 20
Jdist, 20
.macro, 144
.nolist, 20

.org. 117,124

ACSR. 103, 106

adc, 76 ,
ADC (10-bit}, 188
ADC (4-bit), 106 -
ADC clock, 110, EI1
ADC interrupt flsg, 110
ADCH, 109. 111
ADCL, 109, 111
ADCSR, 109, 1%

add, 76

addition (binary}, §, 6, 74
address (byte}, 69, [24
address (word}, 6%. 124
adiw, 94

ADMUX, 109-142

analogue comparaer, 97, 105
analogue to digital converter, 106
" and, 76

AND, 65
andi, 69
arithmetic shift, 5%

asr, 51

assemble, 8, 13, 20, 25
assembly source, 24
AVR Studio, 25, 26, 30

baud rate, 130~133
belr, 72

binary, 3-8

bit, 4. 5

bld, 76

branching table, 94
brbc. 37

brbs. 37

bree,
breq.
brne,
bric, 62

brts. 62

bset, 72

bst, 76

Buffer. 66

button bounce. 42
byte address, 69, 124

L) L)
~) 9

call. 145

carry, 5, 73

carry flag, 51, 53, 73
chi, 25, 31

chaser, 47

clock cycles, 54
clock frequency, 18, 131
clr,22 ,

com, 62

comments, 17, 18
common anode, 35
common cathode, 35
compare, 77

ASCII, 117, 134, 135, 146, 167 comparing, 37 ‘
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1
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|
i
i
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|

counter, 39, 41, 42, 45, 47
cp, 37

cpe, 77

cpi, 39, 47

cpse, 76

o CPU model, &

' DAC, 112, 113, 127

DDRB, 21
- DDRD, 21

. | debouncing, 57

T, i i e L

| dec, 46, 49, 54

. | decimal, 3-7

1 declarations, 20

| defensive programming, 121

| development board, 30, 31

| differential amplifier, 111

5 digital to analogue converter, 112,
113, 127

1 directive, 18,20, 21, 70, 117, 144
i dividing, 80, 88

EEAR, 116
EECR, 116

1 EEDR, 116

EEPROM, 8, 116, 117, 122, 139
emulating, 27

ENOR, 66

eor, 64, 86

3 exclusive OR, 63, 64, 86

external interrupt, 97, 98

1 flag, 73,98

B flash, 8

4 flowchart, 8, 10, 12
framing error, 131
frequency conter, 77
full duplex, 138

If duplex, 138

handshaking, 134

HC (high speed CMOS), 30
hexadecimal, 3—7, 166
HyperTerminal, 133,134

/O pins, 8-10, 14, 16, 21
I/O registers, 13, 15,21,22,91
icall, 93
1CE, 27
ICP, 119
ICRIH, L, 118,119
idle mode, 75
ijmp, 94
in cir~uit emulator, 27
inc, 47
inclusive OR, 63, 64, 71
indirect addressing, 34-36
indirect jump, 93, 94
input capture, 119
inputs, 8-10, 16, 21
instructions, 2, 17
INTO, 97, 98
interrupt enable, 73, 98, 103
interrupt handling routine, 98
interrupt vector table, 97, 121
interrupts, 97
invert, 63
jmp, 145

JTAG interface, 145, 151

labels, 17

1d, 38,91, 93

1dd, 93

1di, 22

1ds, 93

linear congruential method, 102
loading, 38, 91,93
logic 0, 8

logic 1, 8

logic operation, 63-66
logical shift, 51
lookup file, 20
lookup table, 36

PCK, 141 /
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Ipm, 39, 68, 71, 124
Isb, 4, 5
Isl, 51, 124

- Isr, 51

macros, 144
mark/space ratio, 127
marker, 45

masking, 65, 69, 71
master/slave, 138
MCUCR, 76, 98
MegaAVR, 145
microcontroller, 1, 7, 8
mov, 50

msb, 4, 5

mul, 145

multiply, 124, 144, 145
music, 122

NAND, 66

neg, 76

negative (binary), 6, 7, 76

negative flag, 73

nibble, 5, 71,74

noils;:ocanceller (input capture), 119,
nop, 76, 81, 121, 144

NOR, 66

NOT, 66

number systems, 3—7

OCl, 127

OCRI1AH, L, 118, 121, 128
one’s complement, 7, 63
ori, 71, 76

oscillator, 18

out, 22,33

output compare, §21
outputs, 8-10, 16, 21

palindrome, 95
parity bit, 129, 130
parsing, 96

PIC. 2,3

PinB, 15, 27

PinD, 15, 16, 33
pop, 94

PortB, 15 16, 25, 27
PortB, 39
PortD, 15, 16, 26 E\
ports, 15, 16, 21 !
powerdown mode, 75

prescaling, 141-143

program counter, 54, 98 ;
program memory, 8, 55, 69 %
programming, 30 ;
pseudo-surround sound, 115
pullups, 21

push, 55, 94 i
PWM, 127, 128, 141, 143 i

RAM, 8,91, 92

random numbers, 102

rcall, 56

RCEN, 31

reaction tester, 99

registers, 13, 91

registers (1/0), 13, 15, 21, 22, 91
registers (working), 13, 14, 91
reset, 27, 75

ret, 56

reti, 98, 121

RISC, 8

jmp, 21, 25, 33, 54

rol, 51

ror, 51 -

rotate, 51, 69, 71, 80

RS232, 134,136
RXD, 130-133

sbc, 76

sbci, 54

sbi, 17, 25, 31
sbic, 32, 29, 47
sbis, 32, 33, 39
sbiw, 94

sei, 103
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er, 22
i serial peripheral interface, 138, 139
erial port, 133, 134, 136
L et, 64
" ieven segment display, 34-39, 57,
77
SFIOR, 143
shift register, 130, 138
sign bit, 7, 73
simplex, 138
simulating, 26
sleep, 75-77
SPCR, 139, 140
SPDR, 139
Special Function 1/0 .zgister, 143
speedometer, 120
SPH, 92
SPI, 138, 139
SPIEN. 31
SPL, 92
SPSR, 139
SRAM, 8, 91, 92
srbc, 77
srbs, 77
- SREG, 72,73
st, 36, 91
stack, 55, 92, 94
" stack pointer, 92
start bit, 130
Status register, 72, 73
std, 93
step into, 26
step out, 57
step over, 57
STKS500, 31, 133
stm, 145
stop bit, 130
storing, 36, 91
strobing, 9, 10, 77
sts, 93
sub, 76
subi, 46, 54
. | .subroutines, 55

swap, 71
synchronous, 138

T bit, 73, 76

TCCRO, 45

TCCRI, 142

TCCRI1A, 129

TCCRI1B, 119

TCNTO, 44-53

TCNTIH, 117, 118, 128

TCNTIL, 117, 118, 128

TEMP, 118

template, 18, 19

temporary bit, 73, 76

testing, 26, 151

TIFR, 99

timer overflow, 81, 97, 103

timer/counter 1, 117, 118, 121, 128,
141

timing, 44-59

TIMSK, 98, 120, 121

Tinyl5, 111, 141

TinyAVR, 67, 111, 141

trace into, 26

truth table, 63-65

two’s complement, 6, 7, 76

two’s complement flag, 73

TXD, 130, 133

UART, 129-132, 151
UBRR, 131

UCR, 131, 132
UDR, 131

USR, 131, 133

watchdog timer, 74, 77
wdr, 74

wdtcr, 74, 75

word, 13, 14

word address, 69, 124

- working registers, 13, 14, 91

writing, 12

AR v e e Y e 8

XOR’ 63, 64, 86
XTALI1/2, 29

Y, 92

A1

~ Z,13, 14, 36-38, 68

zero flag, 37, 73
ZH, 13, 14, 36
ZL, 13, 14, 36, 37




